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Abstract 

Crop diseases highly inhibit their growth. It may cause a critical loss of yield in crops; thus, respective crop 

quality or quantity gets affected. This is the reason why the detection of the disease in crops plays a significant 

role in the field of agriculture. Detection of crop diseases using some automatic techniques is helpful as it 

minimizes a massive work of supervision in big fields of production. It identifies the early symptoms of diseases 

in crops, i.e., as when they start to become visible on the plant leaves. In this study, beans crop leaf images were 

used in training for the classification, with a total of 1296 leaf images. Two Deep Learning models, namely, 

GoogleNet and VGG16 have been used to automatically extract the features from the images fed to the trained 

network. For training, bean crop leaves were classified into three different categories (classes), namely, Angular 

Leaf Spot, Beans Rust, and Healthy. Experimental results show that GoogleNet performs better than VGG16 

with an accuracy of 95.31%. Visualization approaches, namely, Visualization of Intermediate layer activations, 

Visualization of the CNN filter, and Visualization of Heat Maps were used for analyzing, understanding the 

symptoms, and localization of diseased regions in the leaves. Moreover, it helps the naïve users to understand 

how a convolutional neural network works internally "instead of a black box" to identify and classify the 

diseased regions in an image. 

Keywords: Deep learning, classification, visualization, activation map, CNN. 

Introduction 

Deep Learning (DL) has been started in 1943, as a new subcategory of Machine Learning(ML) when threshold 

logic was proposed to form a learning (computer) model that resembles the brain of humans. The evolution of 

research in this field can be categorized into 2-time frames: starting from 1943 to 2006 and from 2012 to the 

present. In its initial phase of developments, Backpropagation [1], Hand-written text recognition [2], chain-rule 

[3], and training problems were seen [4,5]. Subsequently, there were a lot of architectures/techniques that were 

proposed for multiple applications like the healthcare sector [6], marketing [7], image recognition [8–13], and 

text recognition [2,14,15]. Among all the frameworks, AlexNet [16] is observed as a benchmark in the area of 

DL, after winning the ImageNet challenge (ILSVRC) in 2012. After this, various architectures were proposed to 

overcome the research gaps seen previously. Several well-known performance metrics such as 

training/validation accuracy and loss [17,18], top-5%/top-1% error [8,10,16,19], classification accuracy (CA) 

[20–22], F1-score [23,24], precision and recall [9,17,23] were used to evaluate the results of these architectures.  

As DL frameworks began to make advancements with the time, they were deployed in the field of image 

classification and recognition. These frameworks have also been introduced in various agricultural applications, 

e.g., plant leaves classification was carried out by deploying author- modified Convolutional Neural Network 

(CNN) with random forest (RF) classifier. Among 32 crop species, its performance was observed using CA at 

97.3% [25]. In studies [26,27] and [28], authors performed implementations for fruit and leaf counting. For the 
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classification of different crop types, Kussul et al. [29] implemented a user-modified CNN, Mortensen, et al. 

[18] applied VGG16, Rubwurm et al. [17] proposed LSTM, and Rebetez et al. [30] deployed CNN with RGB 

histogram. In this paper, a performance comparison has been made between the two pre-trained models 

GoogleNet and VGG16, in order to classify the healthy and diseased leaves of bean crops.  

The rest of the paper is framed into the following sections. Section 2, gives some of the insights of DL. Section 

3, discusses the Materials used for crop disease detection. Section 4, describes the experimental analysis using 

pre-trained models deployed over a small data sample. Section 5, Visualizing the learning process on CNN. 

Finally, section 6 concludes the study. 

Insights of DL 

3.1. Applicability of DL for crop disease detection 

Many DL architectures/models were developed soon after the famous AlexNet [16] for image segmentation, 

identification, and classification. This section shows some of the researches carried out using well-known DL 

models for the detection and classification of crops' diseases. In most of the studies, the PlantVillage dataset has 

been commonly used as it comprises 54,306 images of 14 distinct crops with 26 crop diseases [9]. 

LeNet was implemented to identify the diseases in banana leaves. F1-score and CA were applied to evaluate the 

model's performance in Gray Scale and Color modes [23]. In the study [31], the author evaluated a modified 

version of LeNet architecture that was deployed to identify olive crop diseases. Image segmentation technique 

along with edge maps was applied to spot the crop diseases. The same model was implemented in the study [32] 

to identify and classify the diseases in soybean crops. In order to detect vine crop diseases in UAV images, 

Kerkech et al. [33] combined the color space and vegetation indices with the LeNet model. 

Zhang et al. [34] have implemented the three CNN frameworks; AlexNet, ResNet, and GoogLeNet to identify 

the diseases in tomato leaves. Training and validation accuracy was computed to measure the performance of 

the architectures; ResNet gave the best results among all.  

3.2. Data sources 

It was observed that mainly large image datasets were applied over the DL architectures. In some cases, datasets 

comprised of thousands of images, either real images [9,20] or processed by the author [18,28]. Many datasets 

originated from publicly- available datasets, e.g. LifeCLEF, Flavia, PlantVillage, UC Merced, and Malayakew. 

Moreover, several other datasets compromised of the real images captured by the researcher according to their 

needs [11,22,37,38]. These images were taken either by UAV [4,30,39], airborne [40], satellite-based remote 

sensing [17,29], or using fields sensors [41]. In general, data requirement increases with the complexity of the 

problem, e.g., more training data is needed in DL when there is a small variation in between classes and the 

need is to identify a large number of classes in the dataset [9,17,22]. 

3.3. Data- pre-processing 

It comprises the pre-processing of the provided data into floating-point vectors, the data readable by a CNN. The 

major part of related work done includes certain image pre-processing steps that were performed on the images 

prior to the training or their extracted features applied at the input layer of the DL architecture. Some well- 

known pre-processing techniques were image resizing (resized to 60x60, 96x96, 128x128, 256x256 pixels), data 

annotations [37,42], and image segmentation ( used to highlight the regions of interest [9,11,20,43,44] and to 

increase the dataset size [30,45]). Some pre-processing techniques were also deployed for noise removal from 

images such as background removal [9,21], non-green pixel removal [20], extraction of foreground pixels [46]. 

Other techniques involved bounding boxes formation [21,42], conversion of image dataset to grayscale [23], or 

HSV color model [46]. Furthermore, in some studies, the features extracted from the images were fed to the 

input terminal of the DL model such as statistical and shape features [25], wavelet transformations [47], 

histograms [22,25,30], GLCM features [48], and PCA filters [22]. 
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3.4. Data augmentation 

It was observed that various data augmentation techniques [16] have been applied in the literature to enhance the 

diversity of image data for training models without adding new data. It helps to increase the overall learning 

process and the efficiency of the model. Augmentation procedure is especially significant for small datasets 

[11,18,38,49] for the training of DL models, as it helps in the generalization of data through serving the model 

with a variety of data. The use of data augmentation was also observed in the researches, where DL models were 

trained using synthetic images and were validated/tested using the real images [18,28]. 

3.5. Performance metrics 

Various performance metrics have been used by the researchers to evaluate the performance of the model, each 

being precise to the DL model deployed in the study. In Table 1, these metrics are defined along with their used 

symbol. In some studies where the term accuracy is used without defining its meaning, we considered it as 

classification accuracy (CA). It has been deployed as the most commonly used metric. F1- score, RMSE, IoU, 

RFC are some other popular performance metrics. It was observed that some papers deployed a combination of 

metrics for the prediction of the model [50]. 

                     Table 1. Performance metrics deployed in studies under review. 

Performance 

Metric 

Definition Symbol Reference 

Classification 

Accuracy 

It is the % correct prediction from the total 

ones. 

 

CA=  

Notations, 

TP= true positive 

TN= true negative 

FP= false positive 

FN= false negative 

CA [25,40,43,46,51] 

[20–22] 

Precision It is a fraction of the correct prediction from 

the total relevant results. 

P =  

P [9,17,23,50] 

Recall It is a fraction of True Positive from the total 

number of True Positive and false negatives. 

R =  

R [9,17,23,50] 

F1-score Defined as the harmonic mean of precision 

and recall. 

F [23,24] 
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F1 =  

Mean Square 

Error 

Mean of the square of the errors between 

predicted and observed values. 

MSE - 

Root Mean 

Square Error 

Standard deviation of the differences between 

predicted values and observed values. 

RMSE [41,52] 

Ratio of total 

fruits counted 

It was computed as the ratio of the predicted 

count value (of fruits), and the actual count. 

The actual count was calculated by taking the 

average of the model. 

RFC [28,42] 

Intersection 

over Union 

A metric that evaluates predicted bounding 

boxes, by dividing the area of overlap 

between the predicted and the ground-truth 

boxes, by the area of their union. 

IoU [18,50] 

 

Materials and methods 

In order to perform the implementation of DL architectures, various steps are needed; begin from the dataset 

collection to performance analysis and visualization mappings, the complete procedure is shown in figure 1. 
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Figure 1. Flow diagram of the DL model's implementation: Initially, the input data is collected [9] and then split 

into two portions, 80-20 ratio of training and validation set. Soon after, DL architectures are deployed over the 

dataset with pre-training and without pre-training, and training/validation curves are drawn to represent the 

significance of the architectures. Moreover, performance metrics are applied to the classification of images 

(crop disease). Various visualization techniques are also mapped on the test data in prediction mode. 

3.1 Pre-trained models 

For classification of crop diseases, DL models, especially CNN's, are trained directly over raw input images. 

Consequently, the DL models result in learning of the extracted features from input images without the 

involvement of any kind of manual help (human- intervention). In other words, automatic feature extraction 

occurs along with the training of the classifier. 

We have used two CNN models, namely, GoogleNet and VGG16. These frameworks were presented in 

computer vision challenges such as ImageNet and got some winning positions. The motive is to deploy these 

models for the identification of crop diseases.   

 

 

3.1.1 VGG16  

(https://github.com/AI-Lab-Makerere/ibean/) 

Data collection 
Partitioning of the dataset into 

training, validation, and testing 

sets, 80:20 ratio split 

Building the CNN Pre-trained GoogleNet and 

VGG16 models  

Hyper-parameter tuning for 

training Data -preprocessing 

Fitting and saving the model 

Loss and Accuracy curves with 

training & validation set 

Classification results 

Figure 3. Shows the beans crop classification methodology using  CNN. 

Training and validation 

of the model 

Display of test image 

Visualization of 

the intermediate 

CNN outputs 

(Intermediate 

layer 

activations) 

Performance metrics Accuracy, Loss 

Visualization of the CNN filter and Heat Map visualizations using 

VGG16 model 

https://github.com/AI-Lab-Makerere/ibean/


International Journal of Modern Agriculture, Volume 10, No.1, 2021 

ISSN: 2305-7246     

801 

 

VGG16 is a 16 layered CNN architecture with 3x3 convolutional filters deployed to enhance the depth of the 

network. It revealed substantial upgrading for the accuracy of image recognition over large scale. The weight 

configuration of VGG16 architecture is openly accessible. This model involved of 138 million parameters that 

mark it challenging to handle. To detect the diseases in wheat crops, Lu et al. [39] implemented two DL 

architectures, namely, VGG- FCN, and VGG- CNN. Furthermore, feature visualization was done for each block 

in these DL models. In another research [53], the VGG- CNN framework was implemented for identification of 

disease (Fusarium wilt) in radish in which K- means clustering algorithm was applied to detect the spots of 

diseases. 

3.1.2 GoogLeNet  

Szegedy et al. [19] have implemented a 22 layers deep CNN model for image detection and classification. The 

main significance of this model is to improve the utilization of the computational resources that were deployed 

in the network. With the constant computational budget, the width and depth of the CNN were increased in this 

model. Hebbian principle and the concept of multi-scale processing was used to optimize the quality of 

architecture. GoogLeNet gave a top-5 error rate of 6.67%, which is very similar to human-level performance. 

3.2 Workstation specifications and deep learning framework 

All the implementations were performed using GoogleColab (python 3) on a personal computer with GPU:   

• Python 3.7,  

• 1xTesla K80,  

• 2496 CUDA cores, and  

• 12GB GDDR5 VRAM.  

Such kind of GPU specification is vital for reducing the learning time from days to a few hours. GPU support is 

very significant in the processing of ample examples in each iteration of learning. For the implementation of a 

DL, there is a need for committed software and hardware to speed up the training. 

3.3 Dataset 

The dataset was choosen from the GitHub (https://github.com/AI-Lab-Makerere/ibean/). It comprised of the 

beans crop leaf images taken from the real field using a smartphone. Samples of the leaf images according to the 

divided classes are shown in figure 2. Table 2 show a description of the used dataset. This dataset holds 1296 

images split into three classes. We have used three categories (labels) for the identification of diseases in crops. 

Table 2. Summarization of Bean dataset. 

Name of disease Total number of image  

Bean Rust 436 

Angular Leaf Spot 432 

Healthy 428 

Total 1296 
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Experimental Analysis 

It is observed that the fine-tuning of pre-trained networks performed better than training from scratch (without 

pre-trained weights). Moreover, the fine-tuning of hyperparameters increases the accuracy of VGG16 from 

0.896 to 0.9375, and GoogleNet from 0.901 to 0.9531. The impact of transfer learning is clarified by the 

capability of the network that reuses and transmit the features from one problem domain to another. These 

inherited features are used only with some minor changes in the last layers. Furthermore, the fine-tuning of 

hyperparameters is very helpful in situations where training datasets are small. The pre-trained models were 

trained over large datasets (ImageNet) with a higher number of labels, and these were reused over the smaller 

training examples. In addition, fine-tuning also benefits for training over the machines with a limited amount of 

memory in terms of GPU.  

A comparison of the performance of pre-trained models is made with the models that were trained from scratch 

with randomly assigned network weights. It draws the effect of transfer learning on crop disease classification. 

Table 3 and figure 3 show the experimental results obtained with pre-trained and without pre-training. 

Table 3. Experimentation results. 

Deep architectures Performance 

Measures 

Without pre-training With transfer 

learning 

VGG16 Accuracy 

Loss  

 

0.896 

0.319 

0.9375 

0.2608 

 

(a)                 (b)     (c) 

(d)                 (e)        (f) 

Figure 2. shows the beans crop images as follows: (a), (b) represents the Angular Leaf Spot, 

(c), (d) represents the bean rust disease, and (e), (f) represents the heathy leaf images. 



International Journal of Modern Agriculture, Volume 10, No.1, 2021 

ISSN: 2305-7246     

803 

 

GoogleNet Accuracy 

Loss  

 

0.901 

0.329 

0.9531 

0.2024 

 

 

Figure 3. Analysis of DL models (with pre-trained weights versus training from scratch) 

Visualizing the learning process in CNN 

It is observed that DL models are often categorized as "black box representations of learning," as these 

representations having difficulty in the extraction and presentation in a human-readable structure. However, this 

is not entirely true for CNNs, as CNN's represent the visual concepts of the convolutional layers. Here we 

present three visualization concepts of the CNN:  

1. Visualization of the intermediate CNN outputs (Intermediate layer activations): 

It is useful to understand how the subsequent convolutional layer transfers their input from the first layer to the 

last one, and it also gives the idea of what CNN filters do. 

2. Visualization of the CNN filter: 

It is beneficial to understand precisely how visual patterns are receptive to a layer in a CNN. 

3. Visualization of heat maps for class activation in an input (image): 

It is beneficial to understand the parts of an input image that need to be identified to a particular class, or it 

allows a user for the localization of objects (regions of interest) in required images. 

For the first approach (Activation visualization), We are using the small CNN, which is trained from scratch for 

beans disease. For the rest two methods, we have used the VGG16 framework. 

3.4 Visualization of intermediate layer activation  

Visualization of intermediate layer activations displays the feature maps, which are the resultant of the several 

convolutional and pooling layers in the CNN, provided a particular input. The output of the specific layer is 

termed as its activation [54,55]. It shows a view of how any input is segmented into distinct filters learned by 

the CNN. In this study, for feature maps visualization, three dimensions (channels), namely, height, width, and 

depth, are utilized. Each channel encodes its comparatively individual features.  
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The best way for visualization of such features is by individually plotting curves of the content of each channel 

in 2D- image format. Figure 4 shows the steps needed to proceed with the visualization of intermediate layer 

activations. 

The pre-processed image of a leaf (shown in figure 5) has 498*498 feature maps with one batch sample and 32 

channels. It can be printed as: (1, 498, 498, 32). Feature map plotting for the 5th channel and 12th channel of the 

first layer activation is shown in figure 5.  and the full activation visualization of the network is shown in figure 

6. Every channel in the plotted map has eight activation maps of features. For extraction of the feature maps, a 

CNN model is needed that can carry the batches of input images and results in the outcomes of the activations 

for all convolutional and pooling layers.  The model is realized using two parameters, namely, a list of input 

tensors and a list of output tensors. When an input image is fed to this model, it returns the layers' activation 

values.  

5.1.1 Characteristics of visualizations: 

• There are several detectors such as edge detector, bright dot detector, luminance detector, etc. present 

in the first layer of the network. In this phase, the feature activation maps contain the complete 

information present in the provided image. 

• As we go deeper, the feature activations will become more abstract and lesser visible for interpretation. 

Initial representations carry more visual information, and higher-level representations carry lesser 

visual information that is relevant to the classes of the image. 

• The depth of the convolutional layer increases the sparseness of the feature activations that means, at 

the initial layer, input image activates all the maps (filters); however, in subsequent layers, many filters 

left as blank. 

Loading the 

model 

Pre- 

processing of 

a single input 

image 

Display of 

test image 

Instantiating a model 

from an input tensor and 

a list of output tensors 

Running the 

model in 

predict mode 

Visualization 

of the single 

channel 

Visualization of each channel in 

every intermediate activation 

Figure 4. shows the flow of the visualizations of intermediate layer activation 



International Journal of Modern Agriculture, Volume 10, No.1, 2021 

ISSN: 2305-7246     

805 

 

 

 

3.5 Visualization of CNN's filter 

Figure 5. Activation visualizations for channels. 

(a) Pre-processed 

image  

 (c) Visualization of the 

activations in the 12
th
 

channel 

(b)  Visualization of the 

activations in the 5
th

 

channel 
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Filter visualization shows how the CNN layers are reflected in the world. Every layer in the CNN absorbs a pool 

of filters. The filters on CNN become progressively complicated and more advanced with the depth of the 

model. In the study [56], A feature visualization method was used to visualize the working of convolutional 

filters on the ImageNet dataset. Toda et al. [55] showed how CNNs diagnose crop diseases. It demonstrated the 

diagnosis of diseases for the plant's leaves taken from the PlantVillage dataset. The inspection of filters/ maps 

learned by the convolution network was used to show the visible patterns that are the response of an intended 

filter applied to the channel.  Gradient descent was used in the input space for this functionality. Gradient 

descent was applied to the values in the input image of the CNN, which helps in maximizing the response of a 

particular filter (map). The resultant image is the one to which the selected filter is highly responsive. For the 

implementation of this approach, there is a need to form a loss function that helps in maximizing the value of a 

provided filter in a given convolutional layer [54]. 

Subsequently, the stochastic gradient descent was used for the adjustment of the values in an input image in 

order to maximize the feature map activation value. For the implementation of gradient descent, there was a 

need to find the gradient of the loss according to the input fed top of the model. Furthermore, gradient descent 

normalization was carried out to make the process smoother. It could be achieved by dividing the tensor through 

its square root of the average of the square of values in the tensor (L2 norm). This process ensured that the 

magnitude of the updates for the input image remains in the same range. Figure 7 shows the flow diagram for 

visualization of CNNs filter, and figure 8 displays an instance of the pattern for the 0th channel in layer 

block2_conv1. 

 

 

 

Loss tensor definition 

to visualize the filter 

 Acquiring the 

gradient loss w.r.t. 

input image 

Gradient 

Normalization 

Loss maximization 

using stochastic 

gradient descent 

Utility function to 

convert a tensor 

into a valid image 

Function generator 

for feature 

visualization 

Figure 7. displays the flow diagram for visualization of CNNs filter. 
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It was observed that filter '0' in layer block2_conv1 is receptive to a dot-like pattern (see figure 8). Similarly, 

visualization could be displayed for other layers also using the different available filters.  

3.6 Heat maps visualization for class activation  

Heat map visualizations are beneficial to understand which segment of an input image will be forwarded to a 

CNN for the final decision of classification. It also helps to debug the process of decision-making for a CNN, 

especially when there is any classification mistake. It also permits to show the location of particular objects in 

an input image. This visualization category is termed as class activation map (CAM) visualization and 

comprises the production of heat maps for class activation in the given image. A class activation heat map can 

be represented as a 2D grid of scores belonging to a particular output class, evaluated for each location over the 

input image in order to show the significance of every location for its respective class. For example, when input 

is fed into a CNN trained with images of plant diseases, CAM visualization permits for the generation of a heat 

map for class "disease" that indicates disease like spots present in an image. Fujita et al. [57] developed a plant 

diagnosis system for the severe viral manifestations in 9000 cucumber crop leaves images. They have deployed 

Heatmap visualizations to show the diagnostic regions in leaves images and captures significant features in their 

results.   

"Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization" [58], a visualization 

approach given by Selvaraju et al. involves the convolution layer's output feature map, fed an input image, and 

weighing each channel in that feature map using the gradient of class w.r.t. the channel. This approach is 

illustrated in figure 9, using a pre-trained VGG16 network. Let us consider an input image of bean crop disease. 

The DL model trained with the image size dimensions of 500*500 pre-processed using some rules. After pre-

processing, image sizes were adjusted according to the VGG16 architecture. 

 

Figure 8. shows the visibility of pattern for 

the 0th channel in layer block2_conv1. 
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Grad- CAM algorithm [58] was applied for the visualization of the parts of the image that looks like the 

diseased spots present in the leaf of the bean crop. To accomplish the purpose of visualization, heat map 

normalization was done using heat map post-processing, and the normalization range was set up between 0-1. 

Figure 10. shows the effects of Heat Map class activation. 

 

Conclusion 

In this paper, CNN based DL models are compared in order to carry the beans leaf disease (angular leaf spot and 

beans rust) classification. The experimental results show that GoogleNet performs better than VGG16 for 

disease classification. Furthermore, the experimentation also validates the use of pre-training (transfer learning) 

over the without pre-training (training from scratch). This study also performs some visualizations techniques, 

namely, Visualization of intermediate layer activation, Visualization of the CNN filter, and Heat maps based 

visualization for class activation. It visualizes the results of activation maps deployed in the intermediate 

convolutional layers and on the regions of the infected image. It helps the naïve users to understand the internal 

working of the network. 

Declarations 

Loading of the 

network VGG16 

using pre-trained 

weights 

Pre-processing of 

input image for 

VGG16 

Applying Grad-

CAM algorithm 

Heat Map post-

processing 

Superimposing 

the heat map over 

the original 

image 

Figure 9. shows the steps needed for Heat maps visualization of class 

activation. 

(a) Test image of 

rust- disease in 

bean crop leaf 

 

(b) Leaf class activation     

Heat Map on the test 

image 

  

(c) Superimposition of 

class activation Heat Map 

over the original test 

image 

Figure 10. shows the effects of 

Heat Map class activation. 
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