SYNTHESIS AND CHARACTERIZATION OF COBALT(III) DITHIOCARBAMATE COMPLEXES

G. Gurumoorthy

Department of Chemistry, Bharath Institute of Higher Education and Research, Chenna

gurugovindchem@gmail.com

Abstract

Tris(N-(pyrrol-2-ylmethyl)-N-butyldithiocarbamato-S,S')cobalt(III)(1),tris(N-(pyrrol-2-ylmethyl)-N-(2-phenylethyl)dithiocarbamato-S,S')cobalt(III)(2)andtris(N-methylferrocenyl-N-(2-phenylethyl)dithiocarbamato-S,S')cobalt(III)phenylethyl)dithiocarbamato-S,S')cobalt(III)(3) have been synthesized and characterized by elemental analysisand spectroscopy (IR, UV-vis and NMR). The elemental analysis and IR, 1H and 13C NMR spectra areconsistent with the formation of the cobalt(III) complexes with dithiocarbamate ligands.IIIIII

Key words: Cobalt(III) dithiocarbamate

Introduction

A wide range of metal-dithiocarbamate complexes is known with examples finding use in applications as diverse as industry, agriculture, medicine and material science [1-7]. Metal sulfide nanoparticles have shown vital applications in many fields as an advanced materials such as IR detectors [6], photocapacitors for energy conversion and storage [7], sensors [8], photonic materials [9] and advanced optoelectronic devices [10]. In recent years, transition metal dithiocarbamate complexes have received a great deal of attention because of their importance as single source precursors for the preparation of metal sulfide nanoparticles [11,12]. The N-bound organic moieties in dithiocarbamate ligands in metal complexes affect the morphology and size of the metal sulfide nanoparticles [13,14]. These nanoparticles have been used for the photocatalytic degradation of various organic pollutants such as dyes, p-nitrophenol etc.[15,16]. The photocatalytic activity of the metal sulfide nanoparticles depends on the morphology and size of the nanoparticles [17]. Furthermore, transition metal dithiocarbamates containing redox activite feerocene moiety are used as sensors for anions [18,19]. Particularly, cobalt(III) dithiocarbamate complexes have been used as catalyst for the synthesis of β -enaminoesters and β enaminones from 1,3-diketones and β - ketoesters [20], sensor for ions [21] and single source precursor for the preparation of metal sulfide nanoparticles [22]. Our aim is to prepare cobalt(III) dithiocarbamate complexes for the sensing of anions and preparation of cobalt sulfide and cobalt-iron sulfide nanoparticles. In this paper we report, synthesis and characterization of complexes 1-3 and their utilization of 3 for anion sensing and in addition, preparation of cobalt sulfide and cobalt-iron sulfide nanoparticles from complexes 2 and 3 and their photocatalytic behavior for dye degradation are presented.

2. Experimental

2.1. Materials and techniques

All reagents and solvents were commercially available high-grade materials (Merck/ Sd fine/Sigma aldrich) and used as received. IR spectra were recorded on a Thermo Nicolet Avatar 330 FT-IR spectrophotometer (range: $4000-400 \text{ cm}^{-1}$) as KBr pellets. A Shimadzu UV-1650 PC double-beam UV-vis spectrophotometer was used for recording the electronic spectra. The spectra of complexes were recorded in CHCl₃ and the pure solvent was used as the reference. The NMR spectra were recorded on Bruker 500 MHz NMR spectrometers at room temperature in DMSO-d6, using TMS as internal reference.

3. Preparation of complexes

Preparation of amines

N-(pyrrol-2-ylmethyl)-N-butylamine, N-(pyrrol-2-ylmethyl)-N-(2-phenylethyl)amine and methylferrocenyl-N-(2-phenylethyl)amine were prepared by general methods reported earlier [12].

3.1. Preparation of 1

N-(pyrrol-2-ylmethyl)-N-butylamine (3.0 mmol) in ethanol was mixed with carbon disulfide (3.0 mmol) under ice cold condition (5 °C). The solution was stirred for 30 min. This produced the (N-(pyrrol-2-ylmethyl)-Nbutyldithiocarbamic acid solution. An aqueous solution of CoCl₂·6H₂O (1.0 mmol) was added to the dithiocarbamic acid solution resulting in the formation of a green precipitate. The precipitate obtained was filtered, washed several times with cold water and then air dried (Scheme-1). Yield: 78 %, mp: 155-156°C. IR $(KBr, cm^{-1}):$ $v = 3380 (v_{N-H}), 1488 (v_{C-N}), 1027 (v_{C-S}).$ UV-Vis (CHCl₃, nm): $\lambda = 250, 277, 327, 400,$ 488, 642: ¹H NMR (500 MHz, DMSO-d₆): δ 0.98 (b, 9H, N-CH₂-CH₂-CH₂-CH₃), 1.38 (b, 6H, N-CH₂-CH₂-CH₂-CH₃), 1.68 (b, 6H, N-CH₂-CH₂-CH₂-CH₃), 3.65 (6H, N-CH₂-CH₂-CH₂-CH₃) 4.67- 5.02 (m, 6H, N-CH₂-CH₂-CH₃) CH₂ (pyrrole)), 6.15 (s, 3H, H-3(pyrrole)), 6.20 (s, 3H, H-4, (pyrrole)), 6.81 (s, 3H, H-5(pyrrole)), 9.04 (3H, N**H**-pyrrole). ¹³C NMR (125 MHz, DMSO-d₆): δ 13.7 (N-CH₂CH₂CH₂CH₃), 20.1 (N-CH₂-CH₂-CH₂-CH₃), 28.9 (N-CH₂-CH₂-CH₂-CH₃), 44.7 (N-CH₂-CH₂-CH₂-CH₃), 48.1 (N-CH₂ (pyrrole)), 107.8, 109.4, 119.1, 125.6 (pyrrole ring carbons), 205.6 (NCS₂). Anal. Calcd. for C₃₀H₄₅CoN₆S₆, (%): C, 48.62; H, 6.12; N, 11.34; found (%): C, 48.49; H, 6.08; N, 11.24.

3.2. Preparation of 2

A method similar to that described for the synthesis of **1** was adopted; however, N-(pyrrol-2-ylmethyl)-N-(2-phenylethyl)amine was used instead of N-(pyrrol-2-ylmethyl)-N-butylamine (Scheme **1**). Yield: 82%, mp: 150-152°C, IR (KBr, cm⁻¹): v = 3382 (v_{N-H}), 1485 (v_{C-N}), 1028 (v_{C-S}). UV-Vis (CHCl₃, nm): $\lambda = 251$, 278, 326, 398, 482, 642, ¹H NMR (500 MHz, DMSO-d₆): δ 2.99 (6H, NCH₂-CH₂-C₆H₅), 4.69 (6H, NCH₂-CH₂-C₆H₅), 4.81 (6H, NCH₂-(Pyrrole)), 6.20 (6H, H-3 and H-4 (pyrrole)), 6.80 (3H, H-5, (pyrrole)), 7.23-7.36 (15H, phenyl ring protons), 8.91 (3H, NH-pyrrole), ¹³C NMR (125 MHz, DMSO-d₆): δ 33.3 (N-CH₂-CH₂-C₆H₅), 45.6 (N-CH₂CH₂-C₆H₅), 50.2 (N-CH₂-(Pyrrole)), 108.0, 109.6, 119.4, 125.3, (pyrrole ring carbons), 126.7, 128.6, 129.0, 137.6 (phenylring carbons), 205.2 (NCS₂). Anal. Calcd. for C₄₂H₄₅CoN₆S₆ (%): C, 56.99; H, 5.12; N, 9.49; found (%): C, 56.72 ; H, 5.13 ; N, 9.43.

3.3. Preparation of 3

A method similar to that described for the synthesis of **1** was adopted; however, N-methylferrocenyl-N-(2-phenylethyl)amine used instead of N-(pyrrol-2-ylmethyl)-N-butylamine (Scheme **1**) Yield: 84%, mp: 165-166°C. IR (KBr, cm⁻¹): v = 1485 (v_{C-N}), 1025 (v_{C-S}). UV-Vis (CHCl₃, nm): $\lambda = 249$, 274, 323, 401, 472, 632: ¹H NMR (500 MHz, DMSO-d₆): δ 2.91 (N-CH₂-CH₂-C₆H₅), 3.65-4.80 (NCH₂-CH₂-C₆H₅, N-CH₂ ferrocenyl and cyclopentene), 7.24 (b, 15H, phenyl ring protons) ¹³C NMR (125 MHz, DMSO-d₆): δ 33.4 (N-CH₂-CH₂-C₆H₅), 47.9 (N-CH₂-CH₂-C₆H₅), 49.2 (N-CH₂-ferrocenyl), 68.6, 68.8, 70.1, 80.1 (C-C (ferrocenyl ring carbons) 126.5, 128.6, 128.8, 138.3 (phenyl ring carbons), 205.0 (NCS₂). Anal. Calcd. for C₆₀H₆₀CoFe₃N₃S₆ (%): C, 58.02; H, 4.87; N, 3.38; found (%): C, 58.00; H, 4.84; N, 3.37.

N-

4. Results and discussion

4.1 Spectral studies of 1-3

4.1.1 IR spectral studies

IR spectra of the metal dithiocarbamate complexes are useful analytical tool to find the coordination mode (monodendate or bidendate) of dithiocarbamate ligands [24]. In the case of bidentate ligand a solitary band is observed in the region of 950-1050 cm⁻¹ while the splitting of this band within narrow range of 20 cm⁻¹ is due to the monodentate coordination of dithiocarbamate ligand. Only one band associated with the C-S stretching is observed around 1027 cm⁻¹ for **1-3** in the IR spectra confirming the bidentate coordination mode of the ligands. The spectral region from 1450-1500 cm⁻¹ is associated with the v_{C-N} (thioureide) vibrational mode. For complexes **1-3**, the (v_{C-N}) (thioureide) were found around 1485 cm⁻¹, indicating the partial double bond character.

4.1.2 NMR spectral studies

¹H NMR spectral studies

The protons of methylene group attached to pyrrole group in complexes **1** and **2** appear around 4.75 ppm. The remaining three and two signals in the aliphatic region of **1** and **2**, respectively are due to the butyl and ethyl groups; that shifted to lower field being nitrogen bound. NH protons of pyrrole rings are observed around 9.00 ppm. The methylene protons of ferrcenyl methyl, NCH₂ protons of NCH₂CH₂C₆H₅ and ferrocene ring protons are appeared in the region 3.65-4.80 ppm for complex **3**. Aromatic proton signals for all the complexes **1-3** are appeared in the region 6.15-7.30 ppm. The expected splitting patterns were not observed in these complexes. This is due to the paramagnetic nature of the complexes [25].

¹³C NMR spectral studies

For complexes **1** and **2**, the signals for methylene carbon attached pyrrole $NCH_2CH_2C_6H_5$ and NCH_2 (butyl) carbons are observed in the region 45-50 ppm. The other signals appeared in the aliphatic region of **1** and **2** are assigned to the remaining carbons of methylene of butyl and phenyl ethyl groups. In the case of complex **3**, the signals observed at 33.4, 47.9 and 49.2 ppm are due to methylene carbon of N-CH₂-CH₂-C₆H₅, ferrocenyl methyl group, N-CH₂-CH₂-C₆H₅ and, respectively. Ferrocene ring carbons resonate in the region 68.5-77.2 The important ¹³C NMR chemical shift value of the thioureide carbon (N¹³CS₂) observed in the region 204.9-205.6 ppm, indicating contribution of double bond character to a formally single N-C bond in the dithiocarbamates.

4.1.3. Electronic spectral studies

Uv-vis spectra of metal-dithiocarbamate complexes usually show three absorption bands in the ultraviolet region due to π - π * transition of NCS and SCS moiety and n- π * transition (i.e. transfer of a electron of the lone pair on the S to an antibonding π -orbital) [26]. In the present study, these three bands are observed around 250, 275 and 325 nm. A bond appeared around 400 nm is due to either metal—ligand or ligand— metal charge transfer.Complexes **1-3** show two bands in the visible region 630-645 and 470-485 nm due to d-d transitions. The absorption pattern suggests octahedral coordination around Co(III) [27].

5. Conclusions

In this contribution three new cobalt(III) dithiocarbamate complexes have been synthesized and characterized by spectroscopic techniques. UV-vis spectra data are consistent with the formation of octahedral cobalt(III) complexes.

References

1. Z. Leka, D. Voja, M. Kosovic , N. Latinovic, M. Dakovic, A. Visnjevac, Synthesis, structure and antifungal activities of noval Co, Mo and Pt complexes with triammonium N,N-diacetatedithiocarbamate, Polyhedron. 80 (2014) 233-242:

2. G.N. Kaludjerovic, V.M. Ojinovic, S.R. Trifunovic, I.M. Hodzic and T.J. Sabo, Synthesis and characterization of tris[butyl-(1-methyl-3-phenyl-propyl)-dithiocarbamato]-cobalt(III)seskvitoluene, J. Serb. Chem. Soc. 67 (2002) 123-126:

3. R. Abu-El-Halawa, S.A. Zabin, Removal efficiency of Pb, Cd, Cu and Zn from polluted water using dithiocarbamate ligands, J. Taiba Univ. Sci. (2015) 1-9:

4. H. Nabipour, S. Ghammamy, S.Ashuri, Z.S. Aghbologh, Synthesis of a New Dithiocarbamate Compound and Study of Its Biological Properties, Org. Chem. J 2 (2010) 75-80:

5. A.C. Costa Junior, O.Versiane, G.Faget Ondar, J.M. Ramos, G.B. Ferreria, A.A. Martin, C.A. Tellez soto, An experimental and theoretical approach of spectroscopic and structural properties of the bis(diethyldithiocarbamte)-cobalt(II), J. Mol. Struct. 1029 (2012) m119-134:

6. J. Masek , I. Ishida and H. Zogg, C. Maissen, S. Blunier, Monolithic photovoltaic PbS-on-Si infraredsensor array, IEE Electr. Dev. Lett. 11 (1990) 12-14:

7. M. Gong, A. Kiokeminde, N.Kumar, H.Zhao and S.Ren, Ionic-passivated FeS2 photocapactors for energy conversion and storage, Chem. Commun. 49 (2013) 9260-9262:

8. N. Tokyo, K. Azkio, J Pn. Kokai Pat. 7855478 C1.C23 C15/00, (1978).

9. N. Tokya, JPn. Kokai pat. 75130378 C1 H0 1L CO 1B, (1975).

10. D. J. Asunskis, I.L. Boltin, A. T. W Rolde, A.M. Zachary and L.Hanley, Lead sulfide nanocrystalspolymer composition for optoelectronic applications, Macromol. Symp. 268 (2008) 33-37:

11. S. Khalid, E. Ahmed, M.A. Malik, S. Abu bakar, Y. Khan and P.O. Brien, Synthesis of pyrite thin films and transition metal doped pyrite thin films by aerosol-assisted chemical vapour deposition, New. J. Chem. 39 (2015) 1013-1021:

12. E. Sathiyaraj, G. Gurumoorthy and S. Thirumaran, Nickel(II) dithiocarbamate complexes containing the pyrrole moiety for sensing anions and synthesis of nickel sulfide and nickel oxide nanoparticles, New.J.Chem. 39 (2015) 5336-5349:

13. N.L. Pickett and P.O.Brien, Synthesis of semiconductor nanoparticles using single-molecular precursors, Chem. Rec. 1 (2001) 467-479:

14. N. Srinivasan, S. Thirumaran, Effect of pyridine as a ligand in precursor on morphology of CdS nanoparticles, Superlattices Microstruct. 51 (2012) 912-920:

15. N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery and P.Vaziri, Visible light- induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles, Int. J. Mol. Sci. 13 (2012) 12242-12258:

16. Y. Wada, T.Kitamura, S. Yanaqida and H. Yin, Photoreduction dechlorination of chlorinated benzene derivatives catalyzed by ZnS nano crystallites, Chem. Commun. (1998) 2683-2684:

1317

17. S. Rengaraj, S. Venkatraj, S.H. Jec, Y.H. Kim, C. Tai, E. Repo, A. Koistienen, A. Ferancova, M. Sillpaa, Self-Assembled Mesoporous Hierarchial-like In2S3 Hallow Microspheres Composed of Nanofibers and Nanosheets and their Photocatalytic Activity, Langumuir 27 (2011) 352-358:

18. W.W.H. Wong, D. Curiel, S.W. Lai, M. G. B. Drew and P. D. Beer, Ditopic redox-active poly ferrocenyl zinc (II) dithiocarabamate macrocyclic receptors: synthesis, coordination and electrochemical recognition properties, Dalton Trans. 4 (2005) 774-781:

19. P. D. Beer and D. K. Smith, Tunable bis(ferrocenyl) receptors for the solution- phase electrochemical sensing of transition-metal cations, J. Chem. Soc, Dalton Trans. (1998) 417-423:

20. P. Bharati, A. Bharti, P.Nath, M.K. Bharty, R.J. Butcher, N.K. Singh, Synthesis, spectral and structural characterization of cobalt (III) dithiocarbamato complexes: catalytic application for the solvent free enamination reaction, Polyhedron 102 (2015) 375-385:

21. P.D. Beer, N.G. Berry, A.R.Cowley, E.J. Hayer, E.C. Oates and W.W.H. Wong, Metal-directed selfassembly of bimetallic dithiocarbamate transition metal cryptands and their binding capabilities, Chem. Commun. (2003) 2408-2409:

22. H. Cui, R.D. Pike, R. Kershaw, K. Dwight, A. Wold, Synthesi of Ni3S2, Co9S8 and ZnS by the decomposition of diethyldithiocarbamate complexes, J. Solid State Chem. 101 (1992) 115-118:

23. S.K. Verma , V.K. Singh, Synthesis and characterization of ferrocene functionalized transition metal dithiocarbamate complexes: investigations of antimicrobial, electrochemical properties and a new polymorphic form of [Cu{k2S,S-S2CN(CH2C4H3O)CH2Fc}2], J. Orgnomet.Chem. 791 (2015) 214-224:

24. S.A.A. Nami, I. Ullah, M. Alam, Dond-Ung Lee, N. Sarikavakli, Synthesis characterization, molecular docking and biological studies of self assembled transition metal dithiocarbamates of substituted pyrrole-2-carboxaldehyde, J Photochem Photobiol B. 160 (2016) 392-399:

25. M.D. Fryzuk, D.B. Leznoff, R.C. Thompson and S.J. Rettig, One- electron transformations of paramagnetic cobalt complexes: synthesis and structure of cobalt(II) Amidophosphine halide and alkyl complexes and their reaction with alkyl halides, J. Am. Chem. Soc. 120 (1998) 10126-10135:

26. I. P. Ferreira, G. M. de Lima, E. B. Paniago, J. A. Jakahashi, K. Krambrock, C. B. Pinheiro, J. I. Wardell, L. C. Visentin, Synthesis, characterisation, structural and biological aspects of copper(II) dithiocarbamate complexes-part II, $[Cu{S2CN(Me)(R1)}_2]$, $[Cu{S2CN(Me)(R2)}_2]$ and $[Cu{S2CN(R3)(R4)}_2]$ {R1 = CH2CH(OMe)2, R2 = 2-methyl-1,3-dioxolane, R3 = CH2(CH2)2N = CHPhOCH2Ph and R4 = -CH2CH2OH}, J. Mol. Struct. 1048 (2013) 357-366:

27. R. Dulare, M. K. Bharty, A. Singh, A. K. Singh, Synthesis, spectral and structural studies of 1ethoxycarbonyl-piperazine- 4-carbodithioate and its Co(III), Zn(II) and Cd(II) complexes, Polyhedron. 31 (2012) 373-378: