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Abstract

This article, presents the approximate solutions of Chemical Reaction-Diffusion Brusselator system and
Coupled Schrodinger — Korteweg - de Vries equation by a reliable algorithm of New Iterative Method.
Results obtained by proposed method are compared with exact solutions as well as with the results
obtain by Optimal Homotopy Asymptotic Method, Homotopy Perturbation Method and Variational
Iterational Method. New Iterative Method is an improvement with regard to its accuracy and rapid
convergence. Since mathematical analysis leads to Brusselator equations for some chemical reaction-
diffusion experiments, it is worth demanding a new technique to solve such a method. We are creating a
modern and successful recurring method. Numerical results indicate that the approach suggested is
accurate and efficient. The method's precision increases with the number of iterations increasing.
Keywords: New lterative Method, Chemical Reaction-Diffusion Brusselator system, Coupled Schrodinger-
KdV equations.

1. Introduction

The Brusselator model arises in the modelling of certain chemical reaction - diffusion processes. The
Brusselator reaction-diffusion model plays a substantial role in the study of cooperative processes of chemical
kinetics. This system occurs in a large number of physical problems. It arises in the creation of ozone by
atomic oxygen through a triple collision, in enzymatic reactions, and in plasma and laser physics [1]. A pair of
variables is involved in dealing with these chemical reactions with input and output chemicals, whose
concentrations are likely to be controlled during the reaction process and are substantial under quite genuine
conditions. The coupled Schrodinger-KdV equations are extensively used to model nonlinear dynamics of
one-dimensional Langmuir and ion acoustic waves in the system of coordinates moving at the speed of ion
acoustic. The two dimensional chemical-diffusion reaction brusselator system takes the following form

2 2
M=u2v—(A+1)u+y 8_L21+5_L21 +B,
ot ox° oy
2 2
M=—u2v+Au+/4 8_\2/+8_\2/ ,
ot oX* oy
subject to the initial conditions
u(x,y,0) =h(x,y),

v(x,y,0)=9(xy),

where u(x,y,t) and v(x,y,t) are unknown functions representing the dimensionless concentrations of two
reactants, x, y, and t denote the spatial and temporal independent variables, respectively. A and B are constant
concentrations of the two reactants, u represents the diffusion coefficient, and 4 and k are known functions. It
is evident that for small values of diffusion coefficient u, the steady state solution of Brusselator system
converges to the equilibrium point (B, A/B) if 1-A+ B? > 0. During the last few years, the researchers have
shown keen interest in the existence of solution of the Brusselator reaction model when
1 — A+ B?>0 [5-7]. The Coupled Schrodinger Korteweg-de Vries (KdV) equation is given by

(@)
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au(x.t) d*v(x,1) +V(x, t)w(x, 1),

ot ox?

v(xt) _ du(xt) (b)
o e —u(x,tw(x,t),

aw(x,t) ew w(x,t)  d*w(x,t) + 2u(x 1) WD) aw(x t) vty 20D ov(x, t)
ot OX ox° OX

These problems remained the center of research and study for many years and have been investigated by many
researchers. Many authors have investigated the approximate solution of these equations by various
techniques [2-9].

In this research article, we have extended New Iterative Method (NIM) for finding the approximate solution of
above mentioned problems. The method was proposed by Daftardar- Gejji and Jafari and is one of the most
reliable and effective techniques to solve linear and nonlinear functional equations [10-13]. This method
produces a series of analytical solution to such nonlinear equations which converges to the exact solution.

2. Analysis of NIM for Coupled System of PDE’s
Consider the system of partial differential equations in the form of

U,=f+4&@U,u,,..,u) 1=123...,n, (1)
where f; are known function and ¢; are nonlinear operators. Let U =(u,,U,,...,u,) be the solution of

system (1) where u, having the series form,

=D i=1,23..,n. 2
j=0
We decompose the nonlinear operator N, as
4(a)=4[iu., S, ] ®)
_é/(ulo!uzov " n0)+i{[§zulj7 zun] é/zull’ zum]} (4)

By virtue of above equations, Equation (1) takes the followmg form
o ) k k k-1 k-1
dSu, =1, +§i(u1_o,u210,...,un‘o)+Z{(§i2ui’j,...,2uz‘j —nguiyj,...Zun,jj}_ 5)
j=0 k=1 j=0 k=0 j=0 j=0

For 1=1,2,3,...n, we define recurrence relation as

m m-1 m-1
TR [g DUy Uy —gZui,j,...Zun,jJ, m=123.., (6)
j=0 j=0 j=0
then
=D Ui (7)
0
The k-th order approximate to u, is given by

u=>u . (8)

gl(zulw ’iuni)_§1£zu1,i1"'1zun,i]l (9)
" %7 T klu,_llj {1[klu,,, kzlluj_l,,kZujvi,...kzunyi], (10)

i i=0 i=0 i=0

i=

The k-th iteration (k=2,3,4,.....) is given by the following relations
1
0

un,k = é,n (iul,i ""iun—l,i ! iun,ij_gn [%_1 ull’ S un—l,i ! 5 un,i J (11)

=0

n
o
T
S
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Thus
G (0)=¢ (zul,jl---zun,j]:zui,j'
j=0 j=0 1
Hence we have
0=> U,
=
3. Numerical Examples
3.1: Chemical Reaction-Diffusion Brusselator System

Consider Eq. (a) with (A=1, u= % B=0,h(x,y)=e"", and g(x, y) =e*™),

we have
2 2
uy.Y _ =u’v— 2u+— a—2+a—l: )
ot ox* oy
2 2
av(x,y,t)_u uv+ 6\2/+62
ot ox* oy

u(x, y,0) = e(‘x‘y)' v(x,y,0)=e%,

The exact solutions are
t

uxy.t)=e 2, vixy.t)=e

t
(X+y+§)

The equivalent integral forms of the Eq. (14) can be written as

u= I(u v)dt — 2Iudt —I[gg g;g

V= judt j(u v)dt+ = j(a" Zy"}it

(12)

(13)

(14) with initial conditions

(15)

Using NIM formulatlon dlscussed in section 2, we have the following approximations:

U (X, y,t) =,
Vo (X, y,t) =e*,

u,(x, y,t) = Locr t,
(XY ) ==3
v (X, Y1) = e(x*y)t
4
uz(x,y,t)=—e(’x’y)t+§e(’x’y’ 2t+— + e goor - i L :
2 4 2) 8 2 4

2 2
v,y ) et Letn [ op ) Laoen [ oy B)_Laern
2 2 2) 4 2) 8

8t— 2t2—2—t3 E
2 4)

(16)
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2 3 4
Uy (X, yt)— Looon| o U Yoo grogp 20 U,
2) 4 3 4

96— 242 + 4t 2t + 3L |4 L g2
5 ) 192
2t* - 3t — + 4”0 (24 + 6t +t )——1 g 30y
5 884736
5 7
18432t* + 101:;7& +10752t° — 353728t +2496t°
9 10 13
2768t 1264t° _ o 27137 oy
3 13
88736t — 221184t +36864t° — 36864t +13824t° —
1152t +

2 043 4
v, (X, yt)— e( ¥ 2t+t— —le‘*x*y) 8t_2t2_i+t_ +ie(—x—y>
2) 4 3 4) 9

5
(96— 24t +48° - 2t" + %} L L gsem

102
2t - 3t —+ 4”0 (24 + 6t +1°) S S 180
5 884736
5 7
184324 + 2013760 1 7m0ps — 353728t +2496t°
9 10 13
_aTeer’ 1264t° . o 27130
3 13
88736t — 221184t> + 36864t° — 36864t* +138241° —
7 9 10 11
gt T8 e 640 725t . 10181t

Similarly we can find the remaining terms with the help of Mathematica 7.0.
Finally we have

G0x, Y, 1) =Ug (X, Y, 1) + U, (X, Y, 1) + U, (X, Y, 1) +Us (X, Y, 1),
{V(x, Y1) =V (X, Y, 1) +V (X, Y, 1) + VL (X, Y, 1) + v, (X, Y, 1)

3.2: Coupled Schrodinger-KdV equation
Consider Schrodinger-KdV equation of the following form

ou(x,t) _ o*v(x,t)
T - oc +Vv(Xx, )w(x,t),
v(x.t) _ dlu(xt)
e e u(x, tyw(x,t),
8\N(x,t):_6 ow(x,t) 63W(x t) 4 2u(x t)aw( 1) v t)8v(x 1)
ot OX ox®

with initial conditions

u(x,0) = Cos(x),
v(x,0) =Sin(x),

w(x,0) :%

The exact solutions of Eq. (20) is given by

ECRRE

96

|

(18)

(19)
(20)

(21)

(17)
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t
u(x,t) = Cos(x+zj,

v(x,t):Sin(x+%j, (22)

w(x,t) :%
The equivalent integral forms of the Eq. (14) can be written as
t A2 t A2 t
u(x,t) = J.Mdt +jw+jv(x,t)w(x,t)dt,

£ 0%u(x,t)
a 2

v(x,t) = —j (23)

0

dt - j u(x, H)w(x, t)dt,

w(x,t) = 6jwaw(x D [ W();'t)duzju(x,t)Mdujz v(x,t) YWYy
OX OX 5

0
Using NIM formulation dlscussed in section 2, we get the following apprOX|mat|ons.

V, (X, t) =Sin(x),

8v(x t)

U, (%, t) = cos(x), Wy (X, t) = %

u (x,t)= —%tSin(x), v (x,t) = %t Cos(x), w; (X, t) = 2t Cos(x) Sin(x),

(24)
u,(x,t) = —Sit2 Cos(x) +1t2 Sin(x)Sin(2x) +it3 Cos(x)Sin(2x),

v, (X, t)_—3—t Sln(x)——t Cos(x)Sln(x)+ tSSln(x)Sln(Zx)

Similarly we can find the remaining terms with the help of Mathematica 7.0.

Finally we can get the following expression as
G(X,t) =uy(X,t) +u, (X, t)+u,(Xt),
V(X,t) =V, (X, t) + v, (X, t) + v, (X,1),
W(X, ) = w, (X, t) +w, (X, t) + w,(x,t), (25)

4. Results and Discussion

We implemented NIM for finding the approximate solutions of Chemical Reaction-Diffusion Brusselator
system and Coupled Schrodinger-KdV equations. The results obtained by NIM for Chemical Reaction-
Diffusion Brusselator system. Table 1 and 2 shows the comparison of absolute errors of NIM and OHAM
foru(X,y,t) and Vv(x,Y,t) part of Chemical Reaction-Diffusion Brusselator system. From the numerical
values and graphs it is clear that NIM is very powerful tool for solution of coupled system of partial
differential equations. The accuracy of the NIM can further be increased by taking higher order

approximations.

Table 1
3" order approximate solution U(X, y,t) obtained by NIM in comparison with exact

Solution and third order OHAM solution [14] at t =0.25

X/t y NIM Exact Absolute Error | Absolute Error
OHAM [14] NIM
0.5 0.25 0.535261 0.535248 2.317 x10° 1.338x10°
0.5 0.5 0.416862 0.416847 1.804 x10° 1.464x10°
0.5 0.75 0.324652 0.324639 1.405 x10°® 1.339x10°
Table 2

3" order approximate solution V(X, Y,t) obtained by NIM in comparison with exact
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Solution and third order OHAM solution [14] at X=0.2,t =0.01

x/t y NIM Exact Absolute Error | Absolute Error
OHAM [14] NIM
0.2/ 0.25 1.57617 1.57617 1.813 x10° 1.041x10%
0.01
0.2/ 0.5 2.02385 2.02385 2.328 x10° 7.683x101
0.01
0.2/ 0.75 2.59867 2.59867 2.989 x10° 4.105x101*
0.01
Table 3
Absolute errors of NIM corresponding to exact solution at different time level for u(x1) of Eg. (20
X t=0.5 t=0.2 t=0.1 t=0.01 t =0.001
-3 320577x10* 969838x10* 219824x10* 1.99424x10® 1.97382x10®
-2 126114x10* 139541x10 346466x107 344318x10° 3.44103x107
-1 184298x10* 149928x10 378698x107 382186x10° 3.82535x10
0 325267x10* 2.60395x10 1.62757x10® | 1.62759x10? | 2.22045x10
1 167187x10* 156128x102 386448x10° 382961x10° 3.82612x10”
2 144604x10* 13572x1072 341691x10°® 343841x10° 3.44055%10”
3 323446x10* 606891x10* 174455x10* 1.94887x10® 1.96929x10®
Table 4
Absolute errors of NIM corresponding to exact solution at different time level for v(xt) of Eq. (20)
X t=05 t=0.2 t=0.1 t=0.01 t=0.001
-3 338461x1072 548551x107 137723x10°3 138251x10° 1.38304x10°7
-2 320732x107 583162x1073 151629x10°3 156886x10° 1.57412x1077
-1 695665x1072 103475x10 252166x107 246299x10° 2.45713x10”
0 325267x10* 208307x10° 2.60409x10° | 2.60417x10° | 2.60417x10?
1 532745x107 930478x1073 239132x10°3 244996x10° 2.45583x107
2 466805%10? 67665x107 163315x10°3 158055x10° 1.57529x1077
3 353116x1072 557933x107 138896x10°3 138368x10° 1.38315x10”7
Table 5
Comparison of NIM solution with exact solution for W(X, t) Eq. (20)
X NIM Exact
-3 3/4 3/4
-2 3/4 3/4
-1 3/4 3/4
0 3/4 3/4
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1 3/4 3/4
2 3/4 3/4
3 3/4 3/4

5. Conclusion

New lIterative Method converges rapidly to the exact solution at lower order of approximations for Chemical
Reaction-Diffusion Brusselator system and Coupled Schrodinger-Korteweg-de Vries equation. The results
obtained by proposed method are very encouraging in comparison with OHAM, HPM and VIM. As a result it
will be more appealing for researchers to apply this method for solving systems of nonlinear partial
differential equations in different fields of science especially in fluid dynamics and physics.
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