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Abstract 

Plants play a significant role in Indian agriculture as well as the economy of the country. However, the expected 

growth of plants are affected by diseases, which may cause complete damage to leaf, fruits, flower, and stem, 

which also leads to economic losses in agriculture. Therefore, plant disease detection is an essential task for 

improving crop quality and production process. Researchers developed popular techniques, namely Support 

Vector Machine (SVM) and Convolution Neural Network (CNN), to recognize plant diseases. However, the 

classification accuracy is diminished due to the high curse of dimensionality with redundant data. Feature 

selection techniques are developed to address these issues, but single feature selection techniques, namely 

ReliefF, F-score are unstable in nature, which affects the classification accuracy for various subsets of features. 

So, as to settle all these issues, a hybrid ensemble feature selection technique is introduced in this research 

study. The input images are pre-processed using a multi-scale retinex algorithm, where the segmentation of leaf 

images is carried out by using Kernel Fuzzy C Means (KFCM), and affected area segmentation is carried out by 

using the multilevel Otsu Thresholding technique. The features are extracted using a hybrid feature extraction 

technique, and optimal features are selected using the ensemble feature selection technique with Mutual 

Information (EFS-MI). Finally, Deep Neural Network (DNN) is developed to categorize the healthy and 

affected leaves of Plant Village Dataset (apple and potato) and collected dataset (rice and groundnut). The 

experimental results proved that the proposed DNN achieved 98.77% of accuracy while existing multi-class 

SVM (M-SVM) achieved 97.03% of accuracy on potato data. 

Key words: Agriculture; Deep Neural Network; Hybrid Ensemble Feature Selection; Mutual Information; 

Plants; Redundant Data; Segmentation; Support Vector Machine 

Introduction 

Agriculture is seen as an important sector in the Indian economy and an income source for many 

individuals. Agriculture is the basic need for human existence. In developing countries like India, the production 

of food products such as wheat, fruits, and vegetables need to be maximized to meet human needs. In addition, 

the quality of the products must meet specific quality standards to maintain the safety of human health and 

welfare 1,2. The importance of plants has continued to evolve in modern life, and many researchers from 

various scientific disciplines connected directly or indirectly with plants. Plants influence the climate and the 

ecosystem. They have many uses, such as agriculture, environment, energy, health, medicine, etc. 3. However, 

farmers also face water shortages, natural disasters, plant diseases, and many other challenges. In general, the 

leaves of the plant are essential components and symbolize the properties of the whole plant 4; it is the first 

source for identifying most plant diseases. The approach for early diagnosis of plant diseases is a significant 
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move towards precision agriculture. Recognition of plant diseases at its early stages may increase the probability 

of recovery and reduce damage to crops 7. Using effective imaging techniques 8, Rice Blast (RB) and Bacterial 

Leaf Blight (BLB), early and late blight, and several other viruses caused by fungi and bacteria can 

automatically be detected. Therefore, this study focuses only on the recognition of plant diseases based on the 

properties of the leaves.  

Precision farming uses the latest knowledge to improve decision making 9. Early and accurate 

identification is an essential aspect of disease monitoring 10. Leaf symptoms are essential information for 

identifying diseases that occur in different types of plants. Most of these diseases can be judged by the naked 

eye of a person skilled in the art based on their symptoms. However, plant disease identification is expensive 

due to the lack of specialists and high cost 11. In this regard, in collaboration with experts in the field of 

agriculture, computer researchers have proposed several algorithms for the automatic recognition of plant and 

fruit viruses 12. The significant details of plant leaf diseased images can be attained by using the learning 

algorithms. Leaves are segmented according to some common spectral characteristics of image objects like 

color, size, shape, spatial relationship with neighbouring pixels, and texture. In general, the strategy for 

processing images consists of two steps; Essential attributes are initially extracted from the input leaf images, 

and an effective classifier is used in a second step to classify the images into healthy and diseased images 13.  

In this study, a multi-scale retinex algorithm is used to pre-process the input data, which is given as input 

to the segmentation process. Two kinds of segmentations are carried out in this study using KFCM and 

Multilevel Otsu Thresholding for leaf and affected areas of pre-processed data. To choose the best subset of 

features to enhance classification 7 accuracy, hybrid feature extraction techniques and ensemble feature 

selection methods are used. Finally, DNN is used as a classifier for plant disease classification. The experiments 

are carried out in terms of six significant parameters on the Plant Village dataset (apple and potato) as well as on 

the collected real-time dataset (rice and groundnut). 

The organization of the paper includes: Section 2 presents the study of existing techniques from the year 

2018 to 2020. Section 3 denotes the problem statement, where the explanation of the proposed methodology is 

given in Section 4. The validation of the proposed ensemble feature selection, and the proposed classifier on two 

datasets, are described in Section 5. Finally, the conclusion of the study, with its future work, is represented in 

Section 6.  

Literature Review 

This section defines the study of existing plant leaf disease recognition techniques on a standard dataset. 

In addition, the advantages of existing techniques, along with their limitations, are also presented.  

Khan, et al., 14 focused on the identification and classification of several fetal diseases built on 

correlation coefficients and depth features (CCDF). In the first step, with the use of a hybrid system, the contrast 

of the input image was initially increased, followed by the proposed CC-based partitioning approach that 

segregated infected areas from the backdrop. However, the CCDF method focused only on segmentation and 

feature selection techniques, which required feature extraction techniques for improving accuracy.  

Sharma, et al., 15 developed the CNN model for full images as F-CNN and segmented images as S-CNN 

model. In contrast to the F-CNN model, the S-CNN model shows 98.6% better accuracy when tested on single 

data for 10 disease groups. A limitation of the S-CNN model, however, was that it might not work in regions 

with more than one symptom of the disease. Another drawback was that it was susceptible to the segmentation 

quality; it requires manual inputs for segmentation. 

Khan, et al., 16 applied a new method to identify and detect apple disease, which includes three 

pipelines: pre-processing, segmentation of lesion, and feature extraction with classification. In the first stage, the 

apple plant leaf lesions were improved with a hybrid method, which was a combination of 3D filters, de-
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correlation, 3D Gaussian filters, and 3D media filters. The lesions were then segmented by a correlation method, 

and their results were optimized. Finally, the properties of histogram features and color features were combined 

with a parallel fusion method. The extracted properties have been optimized by GA.  Khan, et al., achieved 

better results in terms of accuracy and execution time than traditional SVM. In order to reduce the 

computational cost, deep learning techniques are required in this study. 

Kamal, et al., 17 detected the plant disease using a model with depth-wise separable convolution 

architecture, which was based on leaf images. In this study, two versions of depth-wise separable convolution 

were considered. The model was trained and tested on a subset of 82,161 healthy images from the publicly 

available Plant Village dataset, which includes 55 different healthy and diseased plants. This model suffers in 

terms of execution speed due to its depth wise separable nature. 

Akram, et al., 18 applied the CNN model to classify diseases of different fruits. First, the spatial 

capabilities were extracted with the assistance of previously trained spatial models such as AlexNet, and VGG, 

which were later refined with the help of transfer learning concepts. A multilevel fusing method based on the 

entropy-controlled threshold was also proposed and used to measure the average of the selected features. 

However, one of the difficulties with using the zero-fill concept when merging parallel features decreased the 

classification accuracy and also increased the computation time. 

Chouhan, et al., 19 implementation of a method called Bacterial foraging based Radial Basis Function 

Neural Network (BRBFNN) to automatically identify and classify plant leaf diseases. Optimization of bacterial 

foraging was used to ensure optimal RBFNN weight, to identify areas infested with various diseases on plant 

leaves, and to increase the speed and accuracy for their classification. The region growth algorithm improved 

network efficiency by finding and grouping starting points with common points for the feature removal process. 

BRBFNN worked on fungal diseases of apple dataset collect from plant village dataset. BRBFNN was superior 

in computational efficiency for detecting and classifying diseases but only worked with fungal diseases. 

Arsenovic, et al., 20 implemented a PlantDiseasesNet with a two-phase network containing PDNet-1 and 

PDNet-2. PDNet-1 was responsible for finding the leaves of plants according to species, while PDNet-2 was 

responsible for sorting the leaves of these plants. The trained model achieved 93.67% accuracy in the given 

dataset and proved effective in challenging environments. Accuracy has been improved through the usage of 

other sources of information such as weather, field location, and stage of the plant. However, the trained model 

was worked only on the single leaf features, which was the drawback of the study. 

Al-bayati, et al., 21 exposed the illness of plant leaf using early and late fusion of two classifiers: 

Modified Optimized DNN (MODNN) with evolutionary grasshopper feature optimization (GOA), Speeded Up 

Robust Features (SURF), and Modified CNN (MCNN). Using the early and late fusion of classifiers, the 

accuracy of this method for Plant leaves has developed and enhanced. The experiments used the parameters 

such as Recall, Precision, F-measure, Error, and Accuracy to describe the validation of the model. From the 

results, it has seen using early fusion was better than late fusion due to the early integration of training instances 

while using the early fusion.  

Problem Statement 

In the field of agriculture, global problems such as climate change, the appearance of many features on 

one single image, viewing images in complex backgrounds, and in multi-featured areas is not simple to 

recognize the disease from that single image. The appearance of the pathological area on the border of the 

image, the different properties of the leaf features, the presence of tone that changes in lighting, and the 

similarity of colors between different features are challenges. Due to the low contrast and noise, it is challenging 

to identify the micro-calcification and a large amount of valuable information in an image. The shape, colour, 

and texture of each lesion are different so, it is difficult for any model to detect and classify without proper pre-

processing of plant diseased leaf images.   
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Researchers using computer vision and machine learning methods have encountered the following 

problems in this area:  

(a) During Pre-processing: Separating leaf elements from an image which contains different symptoms, 

and most of the background areas are similar,  

(b) During Feature Extraction: Features define the exact characteristic of diseases so reducing the 

dimensionality of features for classification is a big task since unnecessary features require a lot of computing 

resources to process them and also affects the accuracy of the model. 

(c) During Feature Selection: Selection of irrelevant features reduces the training speed of the model, 

reduces accuracy, and leads to an overfitting problem. The solutions for these challenges for any machine 

learning or deep learning model in a computer-based vision system are:  

(a) The exact classification of symptoms is only performed by a clear distinction between affected pixels 

and healthy pixels, which is determined by the correct pre-processing step;  

(b) Selecting the subset of features which are relevant using a relevant feature selection technique. 

Proposed Methodology 

This section explains the solutions for the early diagnosis of plant diseases for increasing crop yields. In 

this study, two datasets, namely the Plant Village dataset, collected dataset for rice and groundnuts, are used, 

then KFCM and Multilevel Otsu Thresholding techniques are used for the segmentation process. Then, the 

features of the segmented images are extracted by using hybrid feature extraction techniques. Then, the relevant 

information is selected by ensemble feature selection techniques. Finally, the DNN model is used for the 

classification of plant diseases for selected diseases. Figure 1 presents the proposed method’s overall block 

diagram. 
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Figure 1 Overall Block Diagram of the Proposed Methodology 

4.1. Dataset Collection 

The proposed method uses collected datasets of rice and groundnut along with the Plant Village dataset 

(https://www.kaggle.com/emmarex/plantdisease) for leaf disease prediction. The rice images are collected from 

the Agriculture Research Station (ARS), Nellore, and groundnut are collected from the Regional Agricultural 

Research Station (RARS), Tirupati. The collected images are captured by using a Canon 32M pixel DSLR 

camera. In the standard dataset, many images for various types of classes (i.e., apple, potato, citrus, corn, 

tomato, etc.) are included. In this research study, two main classes of a standard dataset, namely apple and 

potato, are considered, where Table 1 defines the dataset description in terms of the total number of images for 

each class. Figure 2 illustrates the sample images of the Plant Village dataset, where Figure 3 presents the 

sample images of the collected real-time dataset used in this research work.  

Table 1 Data Description of Standard and Collected Real Time Dataset 

Standard Dataset / Collected Dataset Classes Total number of images 

Apple Scab 630 

 Black Rot 621 

 Cedar Rust 275 

 Healthy 1645 

Potato Early Blight 1000 

 Late Blight 1000 
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 Healthy 152 

Rice Powdery Mildew 250 

 Septoria 250 

 Wheat Rust 250 

 Healthy 250 

Groundnut Healthy 250 

 Affected 250 

 

 

Figure 2 Sample Images from Plant Village Dataset 

The dimensions of the images used are 512×512, which is given as input for the pre-processing 

technique. In order to evaluate the proposed model, the model is tested and compared with both the standard 

dataset and manually collected dataset. Ground truth images for manually collected datasets are built carefully 

by using photoshop express software. 
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Figure 3 Sample Images from Collected Real-Time Dataset 

4.2. Pre-Processing 

The contrast of the input images are improved by applying the Multi-scale Retinex (MSR) algorithm. 

The weighted sum of the output Single Scale Retinex 22 is defined as the output of the MSR, where the formula 

for MSR is expressed in Eq. (1-3) 

𝑅𝑀𝑆𝑅𝑖
= ∑ 𝑤𝑛𝑅𝑛𝑖

𝑁
𝑛=1 = ∑ 𝑤𝑛

𝑁
𝑛=1 [log 𝐼𝑖(𝑥, 𝑦) − log(𝐹𝑛(𝑥, 𝑦) ∗ 𝐼𝑖(𝑥, 𝑦))]    (1) 

𝐹𝑛(𝑥, 𝑦) = 𝐶𝑛exp⁡[−(𝑥
2 + 𝑦2)/2𝜎𝑛

2        (2) 

𝐼𝑖(𝑥, 𝑦) = 𝑆𝑖(𝑥, 𝑦)𝑟𝑖(𝑥, 𝑦)         (3) 

Where the input image on the 𝑖 − 𝑡ℎ color channel is illustrated as 𝐼𝑖 , normalized surround function is 

defined as 𝐹, illumination represents as 𝑆𝑖, scene reflectance is denoted as 𝑟𝑖, 𝑁 denotes the number of scales, 

𝑤𝑛 is the weight of each scale, and the filter standard deviation is defined as 𝜎.  

The general appearance of the color elements of an image is determined by the notion of a gray world, 

which states that for an image with a color variation, the average value of the red component, green component, 

and blue component of the image must be measured up to the total value of gray. Images that violate the gray 

world's assumptions, e.g., images can be affected by a particular color, the retinex process described above 

results in grayscale images resulting in reduced color saturation. To address this issue, color restoration has been 

incorporated into MSR. It is proposed to change the multiplication by the color retrieval function in the MSR 

output. Compute the chromaticity coordinates by using Eq. (4) 

𝐼𝑖
′(𝑥, 𝑦) =

𝐼𝑖(𝑥,𝑦)

∑ 𝐼𝑗(𝑥,𝑦)
𝑆
𝑗=1

         (4) 

For the 𝑖𝑡ℎ color channel, where 𝑆 is the number of spectral bands.  𝑆 = 3 for RGB color space. The 

restored color MSR is given by Eq. (5) 

𝑅𝑀𝑆𝑅𝐶𝑅𝑖
(𝑥, 𝑦) = 𝐶𝑖(𝑥, 𝑦)𝑅𝑀𝑆𝑅𝑖

(𝑥, 𝑦)        (5) 

Where, 𝐶𝑖(𝑥, 𝑦) = 𝑓(𝐼𝑖
′(𝑥, 𝑦)) is the 𝑖𝑡ℎ channel of the color restoration function (CRF). In this pre-

processing technique, the CRF provides the finest overall colour restoration and is defined by Eq. (6) 

𝐶𝑖(𝑥, 𝑦) = 𝛽 log[𝛼𝐼𝑖
′(𝑥, 𝑦)]         (6) 

Where 𝛽 is a gain constant, and 𝛼 controls the strength of the nonlinearity. Figure 4 presents the sample 

images of pre-processed apple and groundnut images.   

 

Figure 4 Sample Pre-processed Images using Multi-scale Retinex Algorithm 
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4.3. Segmentation  

After pre-processing, RGB (Red, Green, Blue) is converted into YCbCr (Luminance, Chrominance), 

where KFCM is used to process the cb plane, and Multilevel Otsu thresholding is used to process the cr plane. 

The reason for choosing YCbCr rather than RGB is that in image standards such as JPEG, MPEG1, MPEG2, 

and MPEG4, YCbCr easily gets rid of redundant colour information 23. Due to its transformation simplicity and 

clear separation of luminance and chrominance components makes YCbCr color space is used for segmenting 

the affected leaf region. In this study, segmentation is carried out by two techniques; KFCM is used for leaf 

segmentation, and multilevel Otsu thresholding is used for affected area segmentation, which is explained as 

below: 

4.3.1. Kernelized Fuzzy C Means (KFCM) 

For noiseless images, a traditional FCM gives better segmentation results. But, the FCM neglects to 

classify the noisy information because of the inconsistencies of the element information, which prompts to 

assigning the membership esteems to become erroneous. This is the fundamental reason behind inappropriate 

segmentation that happens during the processing of a noisy image by the FCM 24,25. 

To overcome the concern of the standard FCM, the KFCM algorithm is designed. By using nonlinear 

mapping capacity, the KFCM changes over the input information in the plane of images into advanced 

dimensional element space. The complex and nonlinear distinct issue in the information plane can be changed 

over with the assistance of the mapping capacity into linearly separable in future space. At this point, the FCM 

can perform its task with the determined element space. The objective function of the KFCM is presented in the 

following Eq. (7).  

𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑘
𝑝𝑁

𝑘−1 ‖𝜑(𝑥𝑘) − 𝜑(𝑣𝑖)‖
2 = 2𝑐

𝑖−1 ∑ ∑ 𝑢𝑖𝑘
𝑝𝑁

𝑘−1
𝑐
𝑖−1 (1 − 𝑘(𝑥𝑘 − 𝑣𝑖))   (7) 

Where 𝑝 represents a real number, indicates fuzziness, 𝑢𝑖𝑘
𝑝

 is the data point membership 1
1

c

iki
u




 

and 𝑣𝑖 is the cluster centroid. From the above Eq. (7), 𝑐, N denotes cluster and data point numbers. Here 𝜑 is the 

mapping function. Here, the linear high dimensional feature space is transformed from the non-linear mapping 

of the image plane by using the Gaussian Kernel Function (GKF) given by equation (8). 

𝐾(𝑥, 𝑦) = exp⁡(−𝑑 (𝑥, 𝑦)2 𝜎2)⁄         (8) 

By applying the KFCM, the pre-processed images are segmented from the background (i.e., leaf area 

segmentation), shown in Figure 5.  

 

Figure 5 Segmented Leaf Images Using Kernelized Fuzzy C Means Algorithm 

4.3.2. Multilevel Otsu Thresholding 
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The multilevel Otsu thresholding is a simple and effective algorithm for affected area segmentation of 

input data because it utilizes only the values of maximum variance of the classes. At first, the intensity level 𝐿 of 

the normalized image 𝐼𝑛𝑜𝑟𝑚  is calculated by using Equation (9). 

𝑃𝐻𝑖
𝑒 =

𝐻𝑖
𝑒

𝑀
, ∑ 𝑃𝐻𝑖

𝑒 = 1𝑀
𝑖=1 , 𝑒 = {

1,2,3
1

𝑖𝑓⁡𝑅𝐺𝐵
⁡⁡⁡⁡⁡𝑖𝑓⁡𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒

       (9) 

Where, 𝑃𝐻𝑖
𝑒  is denoted as distribution probability, 𝐻𝑖

𝑒  is a pixel value between the intensity level from 

𝑖⁡to⁡𝑒, 𝑀⁡is stated as the number of pixels in the normalized image⁡𝐼𝑛𝑜𝑟𝑚, 𝐼𝑁 is denoted as intensity level (0 ≤

𝑖 ≤ 𝐿 − 1), and 𝐸 is indicated as image components (RGB or grayscale). In probability distribution, the 

histogram value is normalized using Equation (10). 

 𝑤𝑜
𝐸(𝑡ℎ) = ∑ 𝑃𝐻𝑖

𝑒 ,𝑡ℎ
𝑖=1 𝑤1

𝐸(𝑡ℎ) = ∑ 𝑃𝐻𝑖
𝑒𝐿

𝑖=𝑡ℎ+1        (10) 

Where, 𝜎1
𝑒 = 𝑤0

𝑒(𝜇0
𝑒 + 𝜇𝑇

𝑒 )2, 𝜎2
𝑒 = 𝑤1

𝑒(𝜇1
𝑒 + 𝜇𝑇

𝑒 )2⁡,  𝜇0
𝑒 and 𝜇1

𝑒 are represented as the average rate for 

class variants 1 and 2, ⁡𝜎2𝑒 is indicated as variants between the classes 𝐶, 𝜎1
𝑒 and 𝜎2

𝑒 are indicated as class 

variants 1 and 2 25. Hence, the objective function is estimated by using Equation (11). 

𝐽(𝑡ℎ) = max(⁡𝜎2𝑒(𝑡ℎ)) , 0 ≤ 𝑡ℎ𝑖 ≤ 𝐿 − 1, 𝑖 = 1,2,3, …𝐾      (11) 

Where, 𝑡ℎ = 𝑡ℎ1, 𝑡ℎ2, …… . 𝑡ℎ𝐾−1⁡is indicated as a vector that consists of multiple thresholds. By 

increasing the objective function, the Otsu between class variance function is maximized to obtain an optimal 

threshold level of depth gesture image for better segmentation. Figure 6 shows the sample images for affected 

area segmentation on apple and groundnut images.  

 

Figure 6 Sample Images of Affected area segmentation using Multi-Level Otsu 

These segmented leaves and affected areas are given as input to the feature extraction for extracting the 

features.  

4.4. Feature Extraction 

In this research study, hybrid feature extraction techniques include GLCM, color features, and Local 

Ternary Pattern (LTP), which is explained as follows: 

4.4.1. Gray Level Co-occurrence Matrix (GLCM): The spatial dependence of gray levels in segmented 

images are calculated by using GLCM; the total number of gray levels in the segmented images are equal to the 

total number of rows and columns. Co-occurrence matrices are constructed in four spatial orientations 

(00,450,900 and 1350). In this study, various textural features are calculated using GLCM like Entropy 5, Sum 

entropy 8, Difference entropy, Inverse difference (INV), Inverse difference with normalized and Inverse 

difference moment normalized 27,29. 
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4.4.2. Local Ternary Pattern (LTP): LBP is widely used in various computer vision applications due to its 

simplicity and reliability against the variations of illumination. However, the classification performance is 

limited because it is highly sensitive to noise 26. Therefore, LTP is designed to solve this problem, which 

encodes the third position with pixel variance. Small pixel differences are easily overwhelmed by noise. The 

middle pixel and its neighbouring pixel difference are encoded as trinary 27. To reduce the dimensionality, this 

trinary code has been divided into two binary codes: positive LBP and negative LBP 28.  

4.4.3. Color Features: Color is one of the most used features because it provides minimal storage, high-speed 

retrieval, and simple computational processing. In addition, the color moment method has the smallest feature 

vector size and the least complexity in computation. Therefore, it can be seen as a suitable parameter for 

generating feature vectors that can be used for classification purposes 29. Information about the color 

distribution in the image can be obtained using lower-order moments. In this study, the vectors represent the 

properties of mean, variance, and skewness, i.e., first, second, and third-order, kurtosis, and standard deviation 

30 in RGB, YCbCr, and HSV (Hue, Saturation, Value) planes. 

4.5. Feature Selection 

On a large dataset, the training method takes a long time due to unnecessary dimensional features and 

curses that lead to the degradation of model performance. The selection-based method is used to select the 

relevant subset features and rejects the unnecessary features in data to overcome these difficulties. Four types of 

feature selection are considered, including the filtered, wrapper, embedded, and hybrid approach. The main 

problem with filter-based feature selection is that they don't consider unnecessary data/redundancy in the 

selected features. The single filter-based method provides low classification 25 accuracy because it has biasness 

on the selected features. This study includes an ensemble feature selection technique to select the optimal subset 

of features that increase the prediction accuracy during classification to overcome these difficulties. Five main 

features are selected in this study that consist of Relief-F 31, Pearson Correlation coefficient (PCC) 32, F-score 

33, Infinite Feature Selection (IFS) 34 and Term Variance (TV) 35. The proposed method is a collective 

approach that joins subsets gained from different filters using mutual information of feature-classes and 

features-features, as shown in Figure 7. 

 

Figure 7 Proposed Hybrid Feature Selection Technique 

In Figure 7, the subsets FS1, FS2, FS3, FS4, and FS5 are selected by the five feature selection 

techniques. According to the MI 36, the selected subset features are combined by the combiner that depends on 
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the features class and feature. A combiner which uses MI, takes into account all the first ranked features derived 

from subsets which are selected from feature selection techniques and generally use the same features; if all the 

ranked-features are the same, then optimal features are considered from the common features. Based on the 

experimental study, the method uses the value for the user-defined threshold value as α = 0.75. In this ensemble 

method, the "combiner" plays a significant role in synchronizing the various feature selection approaches. This 

study focuses on minimizing the repetition of selected functions by incorporating feature classes and 

interactions between features using MI for the ensemble feature selection technique. Table 2 provides the 

information for reduced feature-length on training and testing images using proposed ensemble feature selection 

techniques.  

Table 2 Proposed Ensemble Feature Selection Techniques for Optimal Features Length 

Datasets Without Feature Selection With Feature Selection 

Training Images Testing Images Training Images Testing Images 

Apple 2220*597 951*597 2220*179 951*179 

Potato 1506*597 666*597 1506*179 666*179 

Rice 120*597 80*597 120*179 80*179 

Groundnut 70*597 30*597 70*179 30*179 

These optimal feature-length are given as input for final classification (DNN), which is explained in the 

next section.  

4.6. Classification using Deep Neural Network 

The affected regions are classified by using the autoencoder DNN classifier based on selected features. In 

this research, the proper selection of the autoencoder DNN will be a suitable solution for the classification 

process when there is no prior knowledge about the distribution data. An autoencoder DNA usually acts as a 

feedforward network and is not a pre-learning method with greedy level-by-level learning. Data in DNN flow 

from input to output without a loop function. The main advantage of the Autoencoder DNN classifier is the 

ability to reduce losses. The automatic encoder is a coding frame that, as shown in Figure 8, consists of a 

network of neurons with several hidden layers. 

 

Figure 8 Structure of DNN 
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The SoftMax level uses a different trigger function where the non-linearity applied to the previous level 

can be different. The SoftMax activation function is expressed in Eq. (17).  

ℎ𝑖
𝑙 =

𝑒𝑤𝑖
𝑙
ℎ𝑙−1+𝑏𝑖

𝑙

∑ 𝑤𝑖
𝑙ℎ

𝑙−1+𝑏𝑖
𝑙

𝑗

           (12) 

Where 𝑤𝑖
𝑙  is 𝑖𝑡ℎ row of  𝑊𝑙 ⁡and 𝑏𝑖

𝑙 is 𝑖𝑡ℎ  bias term of the final layer. This research can employ⁡ℎ𝑖
𝑙  as an 

estimator of 𝑃(𝑌 = 𝑖|𝑥). Where 𝑌 is the connected label of input data vector 𝑥. In this case, four output neurons 

at the SoftMax layer can be interpreted to identify the plant disease on apple, potato, rice, and groundnut.  

Results and Discussion 

The proposed system is experimented with using MATLAB (version 2018a) with a 3.0 GHz Intel i3 

processor, 1TB hard disc, and 8 GB of RAM. To validate the effectiveness of the proposed feature selection and 

classifier system, it is compared with the existing systems on the publicly available plant village dataset and 

collected dataset. The parameters such as Accuracy, sensitivity, F1-measure, specificity, Matthews Correlation 

Coefficient (MCC), and Threat score (TS) or critical success index (CSI) are used for validation, which are 

indicated in the Equation (13 - 18).  

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

(√(𝑇𝑃+𝐹𝑁)(𝑇𝑃+𝐹𝑃)(𝑇𝑁+𝐹𝑁)(𝑇𝑁+𝐹𝑃))
× 100       (13) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
× 100        (14) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
× 100         (15) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
⁡𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
× 100        (16) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
× 100         (17) 

 

𝐶𝑆𝐼 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
× 100         (18) 

Where True positive (TP) represents the affected plants correctly identified as plant disease, false-

positive (FP) illustrates the healthy plants incorrectly identified as plant disease. True negative (TN) describes 

the healthy plants correctly identified as healthy plants, and False negative (FN) presents the affected plants 

incorrectly identified as healthy plants.  

5.1. Performance Analysis of Proposed Ensemble Feature Selection  

In this section, the performance of ReliefF, TV, IFS, PCC, F-score, and proposed ensemble or combiner 

feature selection along with DNN classifier are considered on Plant Village as well as collected datasets. Figure 

9 provides the comparison of experimental results of proposed EFS-MI and different feature selection 

techniques with the DNN classifier on the Apple dataset.  

From Figure 9, it is evident that the performance of the proposed ensemble feature selection technique 

with mutual information is better than the single feature selection technique alone. For instance, the PCC 

achieved 84.33% of accuracy, 87.35% of MCC, and 76.94% of CSI, where the proposed EFS-MI achieved 

98.87% of accuracy, 98.54% of MCC, and 97.96% of CSI on the apple dataset. The specificity and sensitivity of 

ensemble feature selection are 98.67% and 99.02%, where IFS achieved 97.62% of sensitivity and 98.13% of 
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specificity. The reason is that the ensemble feature selection works based on the MI for selecting the optimal 

features, where the PCC selects its optimal features based on only the correlation between the features.  

 

Figure 9 Performance Comparison of Proposed EFS-MI on Apple Dataset. 

Figure 10 describes the experimental results of the proposed ensemble feature selection with DNN on the 

Potato dataset. 

Accuracy Sensitivity Specificity F1-Measure MCC CSI

ReliefF 97.02 97.11 98.76 97.4 97.6 96.31

PCC 84.33 86.06 95.94 82.87 87.35 76.94

F-score 93.59 96.68 96.03 93.18 90.85 87.75

TV 95.97 94.11 98.7 96 94.77 92.13

IFS 97.6 97.62 98.13 96.53 95.59 94.15

EFS-MI 98.87 98.67 99.02 97.38 98.54 97.96
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Figure10 Performance Comparison of Proposed EFS-MI with Existing Techniques on Potato Dataset. 

While comparing with all single feature selection techniques, PCC achieved less performance, i.e., 

84.22% of accuracy, 84.92% of sensitivity, 94.36% of specificity, 82.34% of F1-measure, 87.18% of MCC, and 

75.87% of CSI. The reason is that PCC is sensitive to a linear relationship that provides poor performance than 

other feature selection techniques. The reliefF algorithm achieved 96.87% of accuracy, 98.44% of specificity, 

96.85% of sensitivity, which is close to the performance of the proposed ensemble feature selection technique, 

i.e., 98.77% of accuracy, 98.84% of specificity, and 98.63% of sensitivity. However, the CSI of ReliefF is low 

(i.e.94.66%) than the CSI of the proposed ensemble technique (i.e.97.74%). This shows that the proposed 

ensemble feature selection technique achieved better performance on the potato dataset. Figure 11 illustrates the 

performance of the proposed ensemble feature selection technique with DNN on the rice dataset.  

 

Accuracy Sensitivity Specificity F1-Measure MCC CSI

ReliefF 96.87 96.85 98.44 96.19 96.7 94.66

PCC 84.22 84.92 94.36 82.34 87.18 75.87

F-score 92.53 95.74 95.4 91.87 90.39 85.76

TV 94.41 94.09 97.64 94.62 92.94 91.98

IFS 95.73 96.94 97.8 95.03 95.29 93.26

EFS-MI 98.77 98.63 98.84 96.62 98.42 97.74
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Figure 11 Performance Comparison of Proposed EFS-MI with Existing Techniques on Rice Dataset. 

From Figure 11, it is clearly shown that the proposed ensemble feature selection technique achieved 

higher performance than other single feature selection techniques on the rice dataset. For instance, the ensemble 

technique achieved 91% to 93% on sensitivity, specificity, MCC, F1-measure, and CSI, where the same method 

achieved only 89.67% of accuracy. While comparing with other single feature selection techniques, PCC 

achieved only 44% to 55% of CSI, sensitivity, F1-measure, and accuracy due to its weighting function on the 

extracted rice data features. The IFS and ReliefF feature selection techniques achieved nearly 86% of accuracy 

and 92% F1-measure, where the proposed ensemble feature selection technique achieved 89.67% accuracy and 

93.80% of F1-measure. However, the same proposed method achieved less performance on collected rice data 

than the Plant Village dataset of apple and potato, which is shown in Figure 9 and 10. The reason is that the 

collected dataset suffers from various lighting conditions, background blur, and different illumination 

conditions. However, the effective KFCM and multilevel Otsu thresholding are used in this research study; the 

characteristics of input collected images lead to low accuracy. Figure 12 presents the experimental results of 

proposed ensemble feature selection techniques with DNN on the groundnut dataset. 

 

Figure 12 Performance Comparison of Proposed EFS-MI with Existing Techniques on Groundnut Dataset 

The proposed ensemble feature selection technique achieved better performance on the groundnut dataset 

than the collected rice dataset. For instance, the same method achieved nearly 89% accuracy on the collected 

rice dataset, where it achieved nearly 96% accuracy on the groundnut dataset. The reason is that the rice dataset 

has multiple classes, but the groundnut dataset used has only two classes that lead to better performance using 

the ensemble feature selection technique on the groundnut dataset. Here, the single feature selection techniques 

also achieved higher performance in terms of all parameters. For instance, ReliefF, TV, F-score, PCC, and IFS 

achieved nearly 91% to 95% of accuracy, sensitivity, specificity, and F1-measure, then these techniques 

achieved nearly 87% to 92% of MCC and CSI. However, the ensemble feature selection technique achieved 

nearly 96% accuracy, sensitivity, specificity, and F1-measure and achieved nearly 93% of MCC and CSI. 

5.2. Performance Analysis of Proposed DNN Classifier with Proposed Feature Selection Technique  

Accuracy Sensitivity Specificity F1-Measure MCC CSI

ReliefF 95.63 96.28 95.84 95.01 92.03 93.36

PCC 95.09 93.7 95.09 91.39 92.18 91.03

F-score 93.21 95.7 87.32 92.7 85.44 87.17

TV 96 93.59 96.11 95.84 92.2 93.26

IFS 94.88 94.88 96.14 94.52 92.8 92.51

EFS-MI 96.6 96.8 96.4 96.61 93.3 93.68
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In this section, the performance of the DNN classifier is tested with other classifiers, namely Multi-class 

Support Vector Machine (MSVM), Artificial Neural Network (ANN), K-Nearest Neighbour (KNN), and 

Random Forest (RF) with proposed feature selection techniques on both Plant Village dataset and collected 

dataset. These classifiers are also implemented with the proposed ensemble feature selection technique on the 

collected as well as on Plant Village datasets to test the performance of the DNN classifier. Figure 13 illustrates 

the validated results of the proposed DNN classifier in terms of all parameters on the apple dataset. It compares 

the performance of (1) Proposed EFS-MI and MSVM (EFS-MI+MSVM), i.e., proposed EFS-MI for feature 

selection and MSVM for classification. (2) Proposed EFS-MI and ANN (EFS-MI+ANN). (3) Proposed EFS-MI 

and KNN (EFS-MI+KNN). (4) Proposed EFS-MI and RF (EFS-MI+RF). (5) Proposed EFS-MI and DNN (EFS-

MI+DNN). 

 

Figure 13 Performance Comparison of Proposed DNN classifier on Apple Dataset. 

In the Plant Village Dataset for Apple, the performance of the proposed DNN classifier achieved better 

results, i.e., 98.87% of accuracy, 98.67% of sensitivity, 99.02% of specificity, 97.38% of F1-measure, 98.57% 

of MCC, and 97.96% of CSI. Among the other traditional classifiers, MSVM achieves better results, which is 

close to the proposed DNN classifier on all parameters. For instance, MSVM achieved 97.73% of accuracy, 

98.07% of sensitivity, 98.51% of specificity, 97.29% of F1-measure, 97.75% of MCC, and 96.66% of CSI. But 

the ANN techniques achieve low performance than RF, KNN, and MSVM, i.e., 77.77% of CSI and 83.83% of 

F1-measure, where RF achieved 92.68% of CSI and 96.14% of F1-measure. The reason for achieving low 

performance by ANN is that it has a high computation burden, and it is sensitive to overfitting. These 

experiments proved that the DNN classifier achieved better performance by using the proposed ensemble 

feature selection technique on the apple dataset. Figure 14 represents the validated results of the DNN classifier 

with other traditional classifiers on the potato dataset. 

Accuracy Sensitivity Specificity F1-Measure MCC CSI

EFS-MI+MSVM 97.73 98.07 98.51 97.29 97.75 96.66

EFS-MI+ANN 85.08 86.4 96.2 83.83 87.12 77.77

EFS-MI+KNN 93.87 97.27 96.53 93.73 91.69 88.34

EFS-MI+RF 96.65 94.33 98.4 96.14 95.02 92.68

EFS-MI+DNN 98.87 98.67 99.02 97.38 98.54 97.96
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Figure 14 Performance Comparison of Proposed DNN classifier on Potato Dataset. 

From Figure 14, it is evident that the traditional ANN and KNN achieved poor performance on the 

potato dataset than MSVM, DNN, and RF. For instance, KNN achieved 88% of CSI, 93.59% of accuracy, and 

93.08% of F1-measure, where ANN achieved 76.81% of CSI, 85.05% of accuracy, and 83.38% of F1-measure. 

The reason is that KNN didn't learn the features from the training data; it works on the principle of nearest 

neighbours, and ANN has more computation burden that leads to poor performance than other classifiers. Even 

though the ensemble feature selection technique is used with all classifiers, the MSVM and RF achieved low 

performance than the proposed DNN classifier. For instance, the MSVM and RF achieved 97.03% and 96.60% 

of accuracy, where the proposed DNN classifier achieved 98.77% of accuracy on the potato dataset. Figure 15 

explains the validated results of the proposed DNN classifier on rice data.  

 

Figure 15 Performance Comparison of Proposed DNN classifier on Rice Dataset. 

Accuracy Sensitivity Specificity F1-Measure MCC CSI

EFS-MI+MSVM 97.03 97.24 98.07 96.8 97.47 96.17

EFS-MI+ANN 85.05 85.71 95.82 83.38 86.44 76.81

EFS-MI+KNN 93.59 96.95 95.77 93.08 91.04 88

EFS-MI+RF 96.6 93.38 98.6 95.43 94.86 92.1

EFS-MI+DNN 98.77 98.63 98.84 96.62 98.42 97.74
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Accuracy Sensitivity Specificity F1-Measure MCC CSI
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EFS-MI+RF 88.03 92.18 91.34 93.11 91.46 91.24
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The proposed DNN classifier has a low accuracy (89.67%) than other parameters, namely sensitivity 

(93.87%), F1-measure (93.80%), MCC (91.74%), and CSI (92.63%). The reason is that collected images on rice 

from the Nellore region, which is subjected to various challenges, include blurring the background and low 

lighting conditions. When compared with other classifiers, ANN achieved deficient performance on rice data, 

i.e., 59.30% of accuracy, 54% of sensitivity, 53.55% of F1-measure, 69.41% of MCC, and 48.89% of CSI. The 

performance of the RF is close to the performance of MSVM. For instance, these two methods achieved nearly 

88% to 89% of accuracy and 91% to 93% of sensitivity, MCC, CSI, F1-measure, and specificity. The reason is 

that the use of the ensemble feature selection technique with MSVM and RF. But, the performance of the 

proposed DNN classifier is high than other classifiers on the collected rice dataset even. Figure 16 provides the 

performance of the proposed DNN classifier with an ensemble feature selection technique on the groundnut 

dataset. 

 

Figure 16 Performance Comparison of Proposed DNN classifier on Groundnut Dataset. 

The experimental results proved that the proposed DNN achieved nearly 96% of accuracy, sensitivity, 

specificity, and F1-measure and nearly 93% of MCC and CSI on groundnut data. All the existing classifiers, 

namely M-SVM, ANN, KNN, and RF are also achieved nearly 91% to 95% of accuracy, sensitivity, specificity, 

and F1-measure, where these techniques achieved 89% to 92% of MCC and CSI. When compared with the rice 

dataset, the performance of the proposed DNN achieved better performance. This is because the groundnut has 

only two classes, i.e., Healthy and Affected. Therefore, the proposed DNN classifier achieved higher 

performance than other traditional classifiers on the groundnut dataset. 

5.3. Comparative Analysis of Proposed Feature Selection with Classifier 

In this section, the performance of DNN classifier with ensemble feature selection technique is compared 

with existing techniques, namely CCDF 14, GA with M-SVM 16, M-SVM 18, PDNet1+PDNet 2 20, and 

MODNN+MCNN 21 in terms of accuracy on Plant Village Dataset. Table 3 provides the comparative results of 

proposed DNN with existing classifiers.  

Accuracy Sensitivity Specificity F1-Measure MCC CSI

EFS-MI+MSVM 95.87 94.73 95.13 94.86 91.74 92.99

EFS-MI+ANN 95.8 95.33 95.6 94.14 92.12 92.49

EFS-MI+KNN 93.87 95.8 88.93 94.27 88.36 89.47

EFS-MI+RF 95.33 96.4 95.27 94.27 92.81 91.95

EFS-MI+DNN 96.6 96.8 96.4 96.61 93.3 93.68
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From the Table 3, it is clearly evident that the proposed DNN classifier achieved better classification 

accuracy on both apple and potato plant diseases than CNN and M-SVM. The existing M-SVM with GA 16 on 

the apple dataset achieved 98.00%, while the existing M-SVM without feature selection technique 18 achieved 

97.80% of accuracy. However, the computation complexity was high in the M-SVM with GA, which requires 

deep learning techniques. Whereas, deep learning techniques, including the MCNN 21, and PDNet1+PDNet2 

20, achieved only 93% and 96.84% of accuracy. The reason is that PDNet has no feature selection techniques, 

and MCNN has a single feature selection technique (SURF). 

Table 3  Comparative Analysis of Proposed EFS-MI with DNN in terms of accuracy 

Author  Methodology Plant Village Dataset Accuracy (%) 

Khan, et al., 14 CCDF Apple 96.90 

Khan, et al., 16  GA+M-SVM Apple 98.00 

Akram, et al., 18 M-SVM Apple 97.80 

Arsenovic, et al., 20 PDNet1+PDNet2 Apple 93.00 

Al-bayati, et al., 21 MODNN+MCNN Apple 96.84 

Potato 95.71 

Proposed  Ensemble feature selection technique 

+ DNN 

Apple 98.87 

Potato 98.77 

 

In this proposed DNN classifier, ensemble feature selection techniques are used for plant disease 

classification, and hence it achieved 98.87% of accuracy on apple data and 98.77% of accuracy on potato data. 

This proves that the proposed DNN with ensemble feature selection technique achieved better performance in 

terms of accuracy on Plant Village Dataset (i.e., apple and potato data) 

Conclusion 

In this research study, an optimized, automated computer-based method is developed for plant disease 

recognition. Five major steps are presented in this study that consists of pre-processing, image segmentation, 

hybrid feature extraction, hybrid ensemble feature selection, and deep learning classifier. In the first step, the 

input data are pre-processed by multi-scale retinex algorithm for image enhancement. Then, these enhanced 

images are given as input to the segmentation process. Two kinds of segmentations are carried out in this study: 

KFCM is used for background subtraction, and Multilevel Otsu Thresholding is used for segmenting the 

affected area of input leaves. Hybrid feature extraction techniques, namely GLCM, color features, and LTP, are 

used to extract the essential features of the segmented data. Then, the ensemble feature selection technique 

includes reliefF, TV, IFS, TV, and PCC are used to select the optimal subset of features for improving the 

classification accuracy. These input subset features are fed into the stack-autoencoder DNN for the final 

classification of plant diseases. The experiments are conducted on the Plant Village dataset (apple and potato) 

and collected dataset (rice and groundnut) in terms of accuracy, specificity, MCC, CSI, sensitivity, and F1-

measure. The results proved that the ensemble feature selection technique achieved 98.87% of accuracy on 

apple, 98.77% of accuracy on potato, 89.67% of accuracy on rice, and 96.60% of accuracy on groundnut data. In 

addition, the proposed DNN classifier achieved 96.60% of accuracy and 96.61% of F1-measure, where the RF 

achieved 95.33% of accuracy and 94.27% of F1-measure on groundnut data. However, the proposed ensemble 

feature selection and DNN achieved less accuracy (i.e., 89.67%) on collected rice data than collected groundnut 

data due to background blur and illumination conditions on rice data. Therefore, an effective image pre-

processing and segmentation techniques are needed to solve the issues on collected rice data as future work. 
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