DESIGN AND ANALYSIS OF SOLAR AGRICULTURAL WATER PUMPING SYSTEM FOR IRRIGATION PURPOSE

Debashree Debadatta Behera¹, Shiv Sankar Das², R.C. Mohanty³, A.M. Mohanty⁴,

Pradyumna Kumar Das⁵

^{1,3,4,5} Department of Mechanical Engineering, Centurion University of Technology and Management, Odisha, India

² Independent Researcher in Clean Energy, Management

Corresponding Author

Debashree Debadatta Behera

Department of Mechanical Engineering, Centurion University of Technology and Management, Odisha, India Email: debashree.behera@cutm.ac.in

Abstract

Sustainable agriculture is the central to achieve sustainable development goals from poverty alleviation to food security to livelihood security. Solar photovoltaic water pumping system is one of the most potential and economic viable as compared diesel operated or grid operated solar pump. The main objective of this paper is to help the farmer to irrigate their field through drip irrigation by using of a DC solar pump. In this paper Simulation of solar water pumping system was carried out by considering various parameters such as geographical site, pumping system parameters, collector plane orientation, the efficiency of pump (39.5%), amount of water pumped as 5486 m³ were calculated by using PV Syst software. In this paper a MPPT DC-converter, solar PV panel 250 WP was used.

Key words: Agricultural, Irrigation, PV Syst software, MPPT DC-converter.

Introduction

Most of the future growth in agriculture is likely to come from intensification, in which irrigation plays an important role. For irrigation, we require energy which is fulfilled using a pump set run by diesel. Though government heavily subsidises agricultural grid connections but in rural areas there is 54 intermittent, fraught with voltage fluctuations, with waiting time for an initial connection being too long. To meet these challenges, solar based irrigation systems like solar operated pumps is an attractive option and is an alternative solution to those powered by grid electricity and diesel. Solar based irrigation system converts solar energy to produce electricity. This electricity is used to pump water. Solar based irrigation system is commercially viable irrigation technology, which has low operational and maintenance cost. So far, 0.14 million solar pumps have been installed including 0.31 million during 2016-17, 2017-18 and 2018-19.

Arrouf et al. [1] had done simulation of photovoltaic pumping system by using MATLAB simulation and got result regarding photovoltaic generator. Ghoneim [2] had done simulation work on solar water pumping system which consists of PV array, DC motor, centrifugal pump and integrated multi point power tracking system to improve the efficiency. Benghanem et al. [3] had estimated the pumping head of photovoltaic water pumping system under four numbers of head and found that it depended on pumping head and global solar radiation. Yadav et al. [4] presented a paper on solar operated water Pumping system and calculated efficiency on basis of variation of solar intensity, ambient temperature and water head. Korpale et al. [5] had done performance test on Solar agricultural water pumping system in which Cd-Te solar panel taken to power the 2HP water pump and maximum flow rate obtained as compared to conventional method. Zahab et al. [6] had simulation standalone solar water pumping system by using MAT lab simulink. The MPPT technique was used to control DC –DC boost converter and to drive BLDC motor. Kumar et al. [7] had done simulation on PV

powered water pumping system by using two MPPT algorithms and got significant increase in efficiency as compared without using MPPT. Kolhe et al. [8] had done performance testing of PV powered water pumping system integrated with DC motor and run by manual tracking system.

Design and Calculation

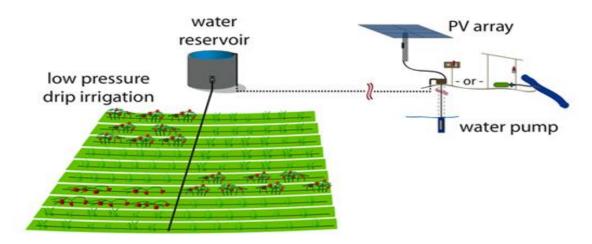


Figure-1. Schematic diagram of solar water pumping system

The main components are Solar Panel (150W solar polycrystalline panel), MCB combo box (6 Amp maximum), DC solar pump (DC pump -96w, 4.1 Amp (max), 310 Lph), Telescopic mounting structure. In this paper we have used a 24 VDC of 96W and a 0.025 HP pump. A solar tracker is a device that orients solar panels towards the sun. We have a manually tracking system used and the tilt angle depends upon the latitude of the place. There we have given the tilt angle as 22 degree. A telescope for mounting the solar panel which was standstill. Which height around (13ft) it can be adjustable. A PENTAIR submersible pump (maximum voltge-12/24v, maximum current-3.9/4.1A, Lph-138/310, pressure-6bar).

			24 Volt DC Flow	v Table	
Total Vertical Lift		Flow Rate Per Hour		Solar Array Size Minimum Total Power Rating	Current
Feet	Meters	Gal	Litre	Watts	Amps
20		117	443	58	1.5
40	12.2	114	432	65	1.7
60	18.3	109	413	78	2.1
80	24.4	106	401	89	2.4
100	30.5	103	390	99	2.6
120	36.6	101	382	104	2.8
140	42.7	99	375	115	3.1
160	48.8	98	371	123	3.3
180	54.9	93	352	135	3.6
200	61.0	91	345	141	3.8
230	70.1	82	310	155	4.1

Table 1-24 Volt DC Flow Table

2.1 Bill of Quantity

BOQ for Solar Drip Irrigation System						
Item No	Description of Item	Unit	Quantity	Rate @Kg	Total price	
1.	GI pipe	2" dia 6 ft	15kg	50 /-	750 /-	
2	GI pipe	1½ '' dia 6ft	11 kg	50/-	550 /-	
3	Angle	35 x35x 5	2 piece18 kg	35/-	630 /-	
4	Bolt	8 mmX254 mm	4 Nos ,0.50 kg	85 /-	42.50 /-	
		8 mmX88.9 mm	4 Nos ,0.35 kg	85 /-	30/-	
		0.5 mmX38.1 mm	6 Nos ,0.20 kg	85 /-	17/-	
5	Washer	8 mm	10	85 /-	10/-	
6	PVC water pipe	16 mm	15 m	20@/m/-	300 /-	
7	Wire red(+) & black(-)	1.5 mm	10 m	240/-	240 /-	
8	MCB Combo	6 A	1 no	400/-	400/-	
9	Rope (Plastic)		10 m	100/-	100 /-	
10	Gum (Silicon gel)		As per required	50 /-	50 /-	
11	Insulation Tape		2 nos	5 /-	10 /-	
12	Dripper		100 nos	3 /-	300 /-	
13	Connector	16 mm	10 nos	3/-	30/-	
14	End Cap	18 mm	10 nos	3/-	30/-	
15	Tee	16 mm	10 nos	10/-	100/-	
16	Fabrication charge				990/-	
17	Mounting charge				1500/-	
Total					6229.50/-	

Table 2. BOQ for Solar Drip Irrigation System

Installation and Fabrication Process

After the preparation of BOQ we procured the materials. It means how we installed the entire panel, motor & the equipment. At first we did site survey and choose a better placed place where the telescope is being installed & the sunlight can come to the solar panel without any obstacle without shadow effect. And with in this unit fabrication of a desired telescope by fabricating the GI pipe, angles & bolts. We used a polycrystalline solar panel due to cost effectiveness and reliability factor. The solar panel consists at two terminal which is determined before the procure of the panel. The solar gives power 150W maximum volte 18.5V and maximum current 8.85A.To join the solar panel to the pump 6A (Max) a MCB combo is used through a 1.5mm wire is

used. The MCB combo whose rating is 6A was chosen to consideration because the pump can run up to current 4.1A and it can sustain.

Observation and Calculation

S.N	Time	Litre	Current	Voltage
1	10:30 AM	4.6 lit		
2	11:00 AM	5 lit		
3	11:15 AM	5 lit		
4	11:30 AM	5 lit		
5	11:45 AM	5 lit		
6	12:00 PM	5 lit	6.1 A	18.8 V
7	12:15 PM	5 lit	7.0 A	18.68 V
8	12:30 PM	5 lit	6.25 A	18.63 V
9	12:45 PM	4.4 lit	6.08 A	18.62 V
10	1:00 PM	4.6 lit	6.14A	18.67V
11	1:15 PM	5 lit	5.86A	18.69V
12	1:20 PM	5.8 lit	5.63A	18.75V
13	2:00 PM	6.00 lit	5.65A	18.08V

Table 3. Discharge rate verses Time

4.1 Calculation

 $Q = 8.33 \times 10^{-3} m^3 / sec$

Area of pipe = $\pi/4 \times d^2 = 1.5386 \times 10^{-4} m^2$

 $Q = A \times V$ (Rate flow of water)

V=0.54 m/sec

Reynolds Number (Re) = $\frac{v \times d}{d}$ = 7560

$$f = \frac{0.079}{Re^{1/4}} = 8.4722 \times 10^{-3}$$

Head lost $(h_f) = \frac{4fLV^2}{2gd} = 0.658 \text{ m}$

 $(H+h_f) = =2.108 \text{ m}$

$$H+h_f + \frac{v_1^2}{2g} + \frac{p}{fg}$$
$$= 12.12$$

Water Head ($h_f = Loss \text{ of Head}$)

$$H = \frac{\rho g Q (H+h_f + \frac{V_1^2}{2g} + \frac{p}{\rho g})}{VI}$$
$$\eta = 8.63\%$$

The efficiency from the calculation we have found to be 9 % approximately, whereas the normal efficiency of any DC pump varies from 10% to 25%.

Result and Discussion

PVSYST V6.81			2	22/11/20	Page 1/5	
Pumping	g PV System: Ba	sic simula	tion parameters	s		
Project : Solar v	ater pumping syste	m				
Geographical Site		Country	India			
		20.16° N Time zone U 0.20	Longitude T+5.5 Altitude			
Meteo data:	Meteonorm 7.2 (1981-2010), Sat=100% - Synthetic					
Simulation variant : New si	mulation variant					
	Simulation date	22/11/20 11h	45			
Simulation parameters						
Pumping System parameter	System type	Deep Well to	o Storage			
Well characteristics	Static level depth	40 m	Specific drawdown		/ m³/h	
(Diameter 40 cm) Storage tank	Pump depth Volume	44 m 30.0 m³	Max. pumping depth Diameter			
Feeding by top	Feeding altitude	5.0 m	Height (full level)			
Hydraulic circuit	Piping length	70 m	Pipes PE32	Dint =	35 mm	
Water needs	Yearly constant:	15.00 m³/day				
Pump	Model	SQF 3A-10 30-300V				
	Manufacturer	Grundfos SQ				
Pump Technology Associated or Integrated converter	Centrifugal Multistage Type	Deep well put MPPT	mp Motor Voltage range		tor, permanent mag 0 V	
Operating conditions		ad Min		ead Max		
i mali su sono su mano su s		30.0	50.0		mWater	
Corresponding maximum Flow Required power	Rate	4.90 1400	4.00		m³/h W	
Collector Plane Orientation	Till	20°	Azimuth		~~	
		20	Aziman	0		
PV Array Characteristics PV module	Si-mono Model	Mono 250 W	n 60 colle			
Original PVsyst database	Manufacturer	Generic	p oo cens			
Number of PV modules	In series	8 modules	In parallel			
Total number of PV modules	Nb. modules	16	Unit Nom. Power			
Array global power Array operating characteristics (50°C	Nominal (STC) () U mpp	4000 Wp 217 V	At operating cond. I mpp		/p (50°C)	
Total area	Module area	26.0 m²	Cell area		*	
		Generic device (optimised for the system) MPPT-DC converter				
	Module area	26.0 m² Generic devid	Cell area	22.8 m		

Figure 2. The details about Pumping System Parameters

1. In Figure 2, Taking geographical Site and considering various Pumping system parameters such as diameter of well, static level depth, volume of storage tank, yearly water needs, PV array characteristics, and MPPT-DC converter details were mentioned

VSYST V6.81					22/11/20	Page 2/5	
Pur	nping PV S	ystem: Det	ailed Sin	nulation parame	eters		
Project :	Solar water	oumping system	m				
Simulation variant :	New simulat						
Main system parameters System Requirements [⊃] ump ⊃V Array System Configuration	Mode	basic Head 45.0 me Model / Manufacturer SQF 3A Model / Manufacturer Mono 2 Nb. of modules 8 S x 2		eep Well to Storage 5.0 meterW Water needs 15.0 m²/day QF 3A-10 30-300V / Grundfos SQFlex ono 250 Wp 60 cells / Generic S S x 2 P Array Power 4000 Wp PPT-DC converter F Array Power 4000 Wp			
,							
Bystem Operating Contro		,		ce, params adjusted ac	c. to the sys	tem)	
Power conditioning unit Operating conditions	Minimu Maximu Maximu	Maximum MPP Voltage 300 V Power Threshold Maximum Array Voltage 300 V Max. efficiency 1		hold 14 ncy 96.5	W %		
Remarks and Technical f	eatures				-		
or systems with MPPT co The parameters are pre-set at the beginning of the simu- Julike exceptions, they are	ted according to lation.		nps and Arra	ay),			
PV Array loss factors		He (const)	20.0 11/1			all i mala	
Γhermal Loss factor Wiring Ohmic Loss	(Uc (const) 20.0 W/m²K Uv Global array res. 226 mOhm Loss Fr			wind) 0.0 W/m²K / m/s action 1.5 % at STC		
Module Quality Loss Module Mismatch Losses Strings Mismatch Ioss ncidence effect (IAM): Free				Loss Fracti Loss Fracti Loss Fracti	tion -0.8 % tion 1.0 % at MPP		
0° 30'			70°	75° 80°	85° 9	90 ^o	
1.000 0.99	08 0.981	0.948 0			0.403 0.	000	

Figure 3. Main system parameters and PV array loss factors

In figure 3, different parameters such as PV array loss factors; basic head of solar water pumping system was mentioned.

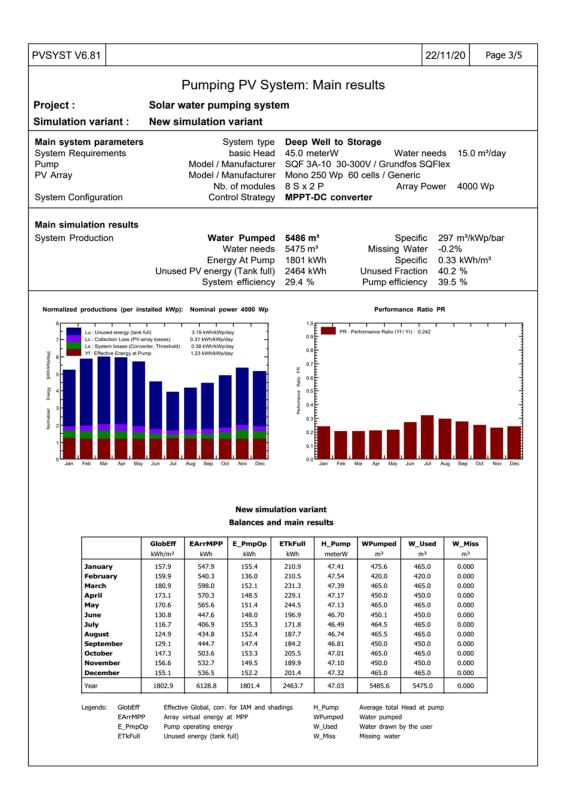


Figure 4. Simulation result of Pumping PV system

In the figure 4 different simulation results such as amount of water pumped, energy available at pump, system efficiency, pump efficiency was obtained.

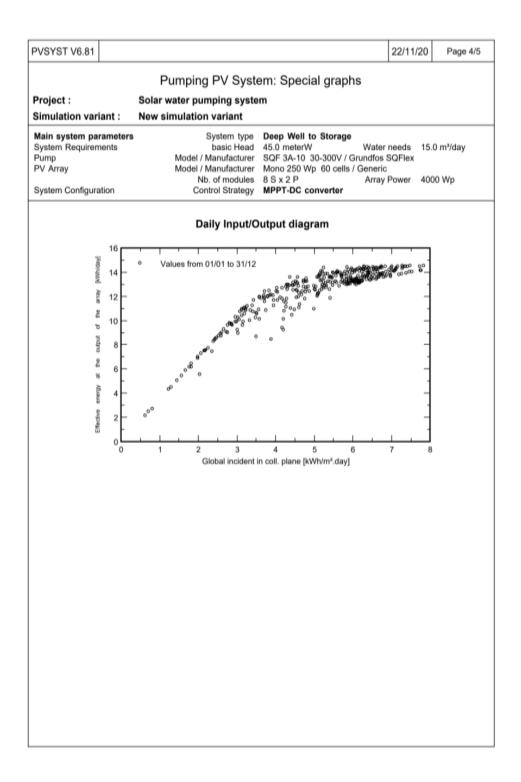


Figure 5. Global incident in collector plane Verses effective energy at the output of array

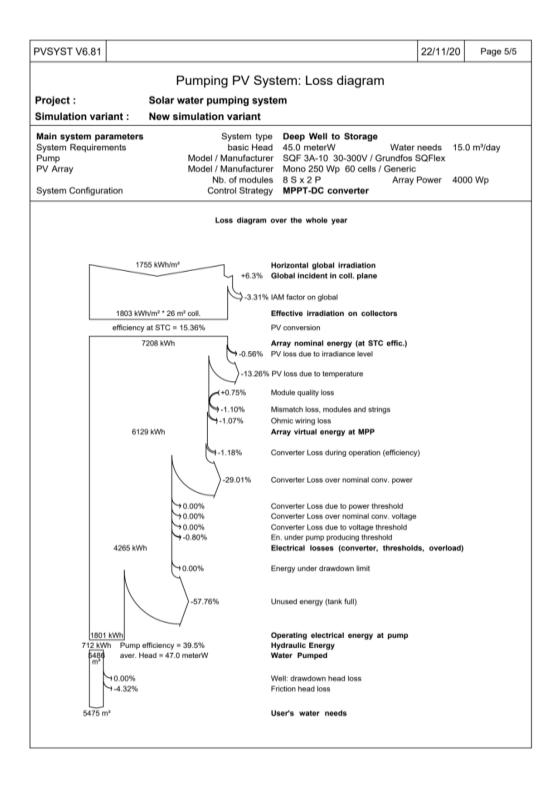


Figure 6. Loss diagram over the whole year

In Figure 6. Overall losses such as horizontal global irradiation, effective irradiation on collectors, array nominal energy, hydraulic energy, and water pumped and amount water needed had been calculated.

References

- 1. Arrouf, Mohamed, and S. Ghabrour. "Modelling and simulation of a pumping system fed by photovoltaic generator within the Matlab/Simulink programming environment." *Desalination*, 209.1-3, 2007: 23-30.
- 2. Ghoneim, A. A. "Design optimization of photovoltaic powered water pumping systems." *Energy conversion and management* 47.11-12, 2006: 1449-1463.
- 3. Benghanem, Mohamed, "Effect of pumping head on solar water pumping system." *Energy Conversion and Management* 77, 2014: 334-339.
- 4. Yadav, Kamlesh, "Solar photovoltaic pumps operating head selection for the optimum efficiency." *Renewable Energy*, 134, 2019: 169-177.
- 5. Korpale, V. S., D. H. Kokate, and S. P. Deshmukh. "Performance assessment of solar agricultural water pumping system." *Energy Procedia* 90, 2016: 518-524.
- Zahab, Essam E. Aboul, Aziza M. Zaki, and Mohamed M. El-sotouhy. "Design and control of a standalone PV water pumping system." *Journal of Electrical Systems and Information Technology* 4.2, 2017: 322-337.
- 7. Oi, Akihiro. "Design and simulation of photovoltaic water pumping system." *California Polytechnic State University*, 2005.
- 8. Benghanem, M., K. O. Daffallah, and A. Almohammedi. "Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data." *Results in Physics* 8, 2018: 949-954.