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Abstract. It is shown that at an infinitesimal bending of a compressed rod beyond the elastic 

limit, the secant modulus of its longitudinal fibers both in the zones of additional loading and 

unloading moves along an infinitely small section of the tangent to the critical point on the 

compression diagram ii   . Each of the longitudinal fibers of a compressed rod under conditions 

of infinitesimal bending has its own secant modulus, which linearly depends on the vertical 

coordinate z; in the zone of additional loading it decreases, and in the zone of unloading it increases. 
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Introduction. The phenomenon of instability is inherent not only in compressed rods, but 

also in thin plates, shells and, in general, various thin-walled structures made of rods, plates and 

shells, widely used in modern technology. 

Loss of stability leads tostructural failure. Therefore, determining the magnitude of the critical 

load is an important practical task in design. Its relevance is especially substantial for the elements 

of building structures and aircraft, where it is vitally necessary to reach the maximum possible 

weight reduction, for the creation of light optimal forms of structures, taking into account the 

strength, rigidity, stability. 

For the first time, the problem of the stability of a rod beyond the proportionality limit was 

considered in 1889. Engesser [1] proposed that at the moment of loss of stability, additional loading 

of some fibers and unloading of other fibers occur with a single tangent modulus. The load 

calculated under this assumption is called tangentially modular load. Later, Engesser and Karman 

solved the same problem, based on a different assumption, assuming that the unloading occurs 

according to a linear law, and introduced the so-called reduced modulus into consideration.The load 

calculated in this wayis called modular. Engesser's earlier work was recognized as erroneous. 

Nevertheless, the discrepancy between theory and experiment continued to persist against the new 

theory, since the experimental results systematically gave lower values of the critical load compared 

to the reduced modular one, being in better agreement with the tangentially modular load. 

The theory of stability beyond the elastic limit was further developed in the studies conducted 

byShanley [2], with a carefully stated experiment; he established that the curvature of a compressed 

rod begins under tangential-modular load. Taking this statement as a postulate, the author made a 

theoretical analysis of the supercritical behavior of the rod at large displacements and showed that 

the given modular load is an asymptote, achieved at an infinitely large deflection value. Since the 

above analysis contains both concepts of critical load(relatively modular and reduced modular 
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loads), the issue of the law of material unloading at the time of instability and after the release of 

this work remained open. The following studies should be indicated except the listed ones [4-15], 

the authors provided solutions to many problems related to the stability of structural elements. 

 

Discussion. We assume that unloading occurs along a straight line 20M  parallel to the 

tangent 20M  that refer to the initial point of the diagram  at an infinitesimal bending of the 

rod (at the time of bifurcation); therefore, an instantaneous break of tangent II occurs (Fig. 1). In 

this formulation of the problem the stability of the rod, its material is two-module; in the additional 

loading zone, its module is tangent kE , and in the unloading zone, we denote it by E , for kEE  . 
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Fig. 1. Compression diagram of a two-module material of the rod. 

The secant modulus 1 in the additional loading zone is determined by the formula [3]: 
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and the secant modulus ,2  related to the unloading zone is determined by the same formula, if 

modulus kE is replaced by E : 
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Fig. 2. Diagram of changes in secant modulus. 

Since the modulus E is greater than the secant modulus of the critical point 0M , equal to

00  tg  (Fig. 1), the secant modulus 2 isless than 0 and, therefore, for a two-module 
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material, the secant modulus in the unloading zone also decreases, as in the additional loading zone 

(Fig. 2); with a smooth transition of the straight line 10 M to the position 20 M , as shown in 

[1], the secant modulus 2 is greater than 0  in the unloading zone. 

It should be noted that in formulas (1) and (2), by which the moduli 1  and 2  are 

determined, the infinitesimal bending strain 
2

2

dx

wd 
  is a positive value. 

For further calculations, it is advisable to represent the formula (2) in the form: 
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where ,kEEE   

We write down the formulas for rigidities 321 ;; III . Since the neutral axis in the considered 

case of a two-module material does not coincide with the central axis 1y , and the secant moduli 1

and 2 are determined by different dependencies (Fig. 2), the expressions for the rigidityshould be 

written separately by zones: 
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The first integral on the right-hand side of this expression represents the static moment S of 

the cross-section relative to the neutral axis that does not coincide with the central axis; it is non-

zero. 

The second integral on the right side represents the static moment of the lower (second) part 

of the section (Fig. 2) relative to the neutral axis; let us denote it by 2S : 
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The formula for rigidity 1I takes the form: 



International Journal of Modern Agriculture, Volume 10, No.2, 2021 
ISSN: 4405 - 4411 

 

4408 
 
 

  .2
0

0
0

01 SESEAI k














                       (5) 

Theexpressionforrigidity 2I is written as 
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The first integral on the right-hand side, as indicated above, is the static moment S  of the 

cross-section relative to the neutral axis; the second integral is the moment of inertia yI of the cross 

section relative to the neutral axis; the third integral is the moment of inertia of the lower (second) 

part of the cross section; we denote it by 2B : 
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The formula for rigidity I 2
takes the form: 
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Theexpressionforrigidity 3I is written as 
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The first integral on the right-hand side is the moment of inertia yI of the cross section 

relative to the neutral axis; the second and third integrals represent new geometric characteristics of 

the cross section, which relative to the coordinate z  are of a higher order than the moment of inertia 

of the plane section. These new geometric characteristics of the section we denote byC : 
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The formula for rigidity 3I takes the form: 
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We expand 203 IIM   the basic equation for determining the infinitesimal internal 

bending moment: 
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Since the static moment S , taken relative to the neutral axis, is a finite value, then the middle 

term in the right-hand side of formula (10), equal to S00 , is also a finite value. Then equation 

(10) is impossible, because the remaining terms of this equation are infinitely small quantities. 

Therefore, it is necessary to consider the static moment S as infinitely small quantity, that is, to 

assume that the neutral axis y merges with the central axis of the section 1y  (Fig. 2). 
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Consequently, the point 0M  on the compression diagram (Fig. 1) is not special and the 

tangent II  goes into position 20 M  smoothly without breaking. 

With an infinitely small bending of the rod, the tangent line II  remains common both for 

the additional loading zone I and for the unloading zone II  (Fig. 2). This is only possible if we 

assume that its material is one-modular. 

The same conclusion can be reached if we consider the expression 210 IIN    for the 

longitudinal force N under conditions of a two-module material. 

Substituting expressions for rigidities (5) and (7) into longitudinal force formulas, we have: 
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The first term on the right-hand side AA 000    is equal to the external compressive 

force F and is balanced by it, the last term can be eliminated since it is an infinitely small quantity 

of a higher order than the other terms in Eq. (11); the middle term  2
0

SESEk
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equilibrium condition must be equal to zero. 

This is possible if: 
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Conclusion 

The first condition requires that the neutral axis of the cross-section y  coincides with the 

central axis 1y (Fig. 2); the second condition will be fulfilled if at the initial stage of the bifurcation 

of equilibrium states, at an infinitesimal bending of the rod, under unloading, there will be one 

modulus kE in the cross section. 
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